Skip to main content
Statistics LibreTexts

Tables

  • Page ID
    5452
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Tables

    Standard Normal Distribution - N(0,1)

    屏幕快照 2019-05-23 下午1.31.21.png

    Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00
    -3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
    -3.4 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
    -3.3 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005
    -3.2 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007
    -3.1 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010
    -3.0 0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013
    -2.9 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019
    -2.8 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026
    -2.7 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035
    -2.6 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047
    -2.5 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062
    -2.4 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082
    -2.3 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107
    -2.2 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139
    -2.1 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179
    -2.0 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228
    -1.9 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287
    -1.8 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359
    -1.7 0.0367 0.0375 0.0384 0.0391 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446
    -1.6 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548
    -1.5 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668
    -1.4 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808
    -1.3 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968
    -1.2 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151
    -1.1 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357
    -1.0 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587
    -0.9 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841
    -0.8 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119
    -0.7 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420
    -0.6 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743
    -0.5 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085
    -0.4 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446
    -0.3 0.3493 0.3520 0.3557 0.3594 0.3532 0.3669 0.3707 0.3745 0.3783 0.3821
    -0.2 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207
    -0.1 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602
    0.0 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.24960 0.5000

    Standard Normal Distribution – N(0,1)

    屏幕快照 2019-05-23 下午1.59.38.png

    Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
    0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
    0.1 0.5398 0.5439 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
    0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
    0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
    0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
    0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
    0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
    0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
    0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
    0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.82=340 0.8365 0.8389
    1.0 0.8413 0.8438 0.8461 0.8485 0.8505 0.8531 0.8554 0.8577 0.8599 0.8621
    1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
    1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
    1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
    1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
    1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
    1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
    1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
    1.8 0.9541 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
    1.9 0.9713 0.9719 0.9727 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
    2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
    2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
    2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
    2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
    2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
    2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
    2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
    2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
    2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
    2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
    3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
    3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
    3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
    3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
    3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

    Student t distributions

    One Tail Probability 0.04 0.025 0.01 0.05 0.025 0.01 0.005 0.0005
    Two Tail Probability 0.8 0.5 0.2 0.1 0.05 0.02 0.01 0.001
    Confidence Level 20% 50% 80% 90% 95% 98% 99% 99.9%
    df
    1 0.325 1.000 3.078 6.314 12.706 31.821 63.656 636.578
    2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 31.600
    3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 12.924
    4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 8.610
    5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 6.869
    6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.959
    7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 5.408
    8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 5.041
    9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 4.781
    10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 4.587
    11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 4.437
    12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 4.318
    13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 4.221
    14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 4.140
    15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 4.073
    16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 4.015
    17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.965
    18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.922
    19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.883
    20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.850
    21 -/257 0.686 1.323 1.721 2.080 2.518 2.831 3.819
    22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.792
    23 0.2565 0.685 1.319 1.714 2.069 2.500 2.807 3.768
    24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.745
    25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.725
    26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.707
    27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.689
    28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.674
    29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.660
    30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.646
    40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 3.551
    60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.460
    120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 3.373
    \(z^{\ast}\) 0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.290

    Chi-Square Distributions

    Area Left 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995
    Area Right 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005
    df
    1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
    2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
    3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
    4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
    5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086 16.750
    6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
    7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
    8 1.344 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
    9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
    10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
    11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 14.725 26.757
    12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
    13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.736 27.688 29.819
    14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
    15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
    16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
    17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
    18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
    19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
    20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
    21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
    22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
    23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
    24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 32.980 45.558
    25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
    26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
    27 11.808 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
    28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994
    29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335
    30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
    40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
    50 27.991 29.707 32.357 34.764 37,689 63.167 67.505 71.420 76.154 79.490
    60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
    70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
    80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
    90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
    100 67.328 70.065 74.222 77.929 82.258 118.498 124.342 129.561 135.807 140.170
    110 75.550 78.458 82.867 86.792 91.471 129.385 135.480 140.916 147.414 151.948