Skip to main content
Statistics LibreTexts

5.2.3: Nested Model in R

  • Page ID
    33641
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    • Load the Exercise Hours data.
    • Obtain the ANOVA table for the nested treatment design.
    • Obtain estimators and CIs for means for each region and city.
    • Obtain means plot for region and city within the region.
    • Obtain Tukey’s multiple comparisons CIs.

    1. Load the Exercise Hours data by using the following commands:

    setwd("~/path-to-folder/")
    ex_hours_data <- read.table("ex_hours_data.txt",header=T)
    attach(ex_hours_data)
    

    2. Obtain the ANOVA table for the nested treatment design by using the following commands:

    nested<-aov(Ex_hours ~ Region+Region/City,data=ex_hours_data)
    summary(nested)
    # Df Sum Sq Mean Sq F value Pr(>F)
    # Region       2  424.7  212.33   65.33 8.46e-05 ***
    # Region:City  3  496.8  165.58   50.95 0.000116 ***
    # Residuals    6   19.5    3.25                     
    # ---
    # Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    

    3. Obtain estimators and CIs for means for each region and city by using the following commands:

    library(lsmeans)
    lsmeans(nested,"Region")
    # Region lsmean    SE df lower.CL upper.CL
    # MW       15.2 0.901  6    13.04     17.5
    # NE       25.8 0.901  6    23.54     28.0
    # W        11.8 0.901  6     9.54     14.0
    #Results are averaged over the levels of: City
    #Confidence level used: 0.95
    lsmeans(nested,"City")
    #City       Region lsmean   SE df lower.CL upper.CL
    # Chicago    MW        9.5 1.27  6     6.38    12.62
    # Detroit    MW       21.0 1.27  6    17.88    24.12
    # NY         NE       32.5 1.27  6    29.38    35.62
    # Pittsburgh NE       19.0 1.27  6    15.88    22.12
    # LA         W        18.5 1.27  6    15.38    21.62
    # Seattle    W         5.0 1.27  6     1.88     8.12
    #Confidence level used: 0.95
    

    4. Obtain means plot for region and city within region by using the following commands:

    library(plotrix)
    region_means<-as.data.frame(lsmeans(nested,"Region"))
    plotCI(x = region_means$lsmean,y = NULL ,li = region_means$lower.CL, ui = region_means$upper.CL, xaxt = "n", xlab="Region",ylab="ExHours")
    axis(1, at=1:3, labels=region_means$Region)
    
    R-generated means plot for ExHours vs region
    Figure \(\PageIndex{1}\): Means plot for ExHours vs region.
    city_means<-as.data.frame(lsmeans(nested,"City"))
    City_Region<-paste(city_means$City,city_means$Region)
    plotCI(x = city_means$lsmean,y = NULL ,li = city_means$lower.CL, ui = city_means$upper.CL, xaxt = "n", xlab="City(Region)",ylab="ExHours")
    axis(1, at=1:6, labels=City_Region)
    
    R-generated means plot for ExHours vs city-region
    Figure \(\PageIndex{2}\): Means plot for ExHours vs City(Region).

    5. Obtain Tukey’s multiple comparisons CIs by using the following commands:

    library(multcomp)
    library(multcompView)
    tukey_multiple_comparisons_region<-TukeyHSD(nested,"Region",conf.level=0.95,ordered=TRUE)
    tukey_multiple_comparisons_region
      Tukey multiple comparisons of means
        95% family-wise confidence level
        factor levels have been ordered
    Fit: aov(formula = Ex_hours ~ Region + Region/City, data = ex_hours_data)
    # $Region
    #      diff        lwr       upr     p adj
    #MW-W   3.5 -0.4112978  7.411298 0.0747598
    #NE-W  14.0 10.0887022 17.911298 0.0000836
    plot(tukey_multiple_comparisons_region)
    
    R-generated graph of 95% family-wise confidence level for differences in mean level of region
    Figure \(\PageIndex{3}\): 95% family-wise confidence levels for differences in mean level of region.
    tukey_multiple_comparisons_city<-TukeyHSD(nested,"Region:City",conf.level=0.95,ordered=TRUE)
    cities<-as.data.frame(na.omit(tukey_multiple_comparisons_city$"Region:City"))
    cities
    
    #                         diff         lwr       upr        p adj
    # MW:Chicago-W:Seattle      4.5 -4.96579743 13.965797 0.5867601138
    # W:LA-W:Seattle           13.5  4.03420257 22.965797 0.0087623039
    # NE:Pittsburgh-W:Seattle  14.0  4.53420257 23.465797 0.0072411812
    # MW:Detroit-W:Seattle     16.0  6.53420257 25.465797 0.0035459602
    # NE:NY-W:Seattle          27.5 18.03420257 36.965797 0.0001761692
    # W:LA-MW:Chicago           9.0 -0.46579743 18.465797 0.0626471065
    # NE:Pittsburgh-MW:Chicago  9.5  0.03420257 18.965797 0.0491884424
    # MW:Detroit-MW:Chicago    11.5  2.03420257 20.965797 0.0198221594
    # NE:NY-MW:Chicago         23.0 13.53420257 32.465797 0.0004610102
    # NE:Pittsburgh-W:LA        0.5 -8.96579743  9.965797 1.0000000000
    # MW:Detroit-W:LA           2.5 -6.96579743 11.965797 0.9752059356
    # NE:NY-W:LA               14.0  4.53420257 23.465797 0.0072411812
    # MW:Detroit-NE:Pittsburgh  2.0 -7.46579743 11.465797 0.9960158169
    # NE:NY-NE:Pittsburgh      13.5  4.03420257 22.965797 0.0087623039
    # NE:NY-MW:Detroit         11.5  2.03420257 20.965797 0.0198221594
    
    library(plotrix)
    city_diff<-as.character(c("
    MW:Chicago-W:Seattle","W:LA-W:Seattle", "NE:Pittsburgh-W:Seattle","MW:Detroit-W:Seattle","NE:NY-W:Seattle ","W:LA-MW:Chicago ","NE:Pittsburgh-MW:Chicago","MW:Detroit-MW:Chicago","NE:NY-MW:Chicago ","NE:Pittsburgh-W:LA ","MW:Detroit-W:LA","NE:NY-W:LA ", "MW:Detroit-NE:Pittsburgh", "NE:NY-NE:Pittsburgh","NE:NY-MW:Detroit"))
    par(mar=c(8, 4, 2, 2) + 0.1)
    plotCI(x = cities$diff,y = NULL ,li = cities$lwr, ui = cities$upr, xaxt = "
    n",ylab="Differences of Means",xlab="")
    abline(h=0)
    axis(1, at=1:15, labels=city_diff,las = 2, cex.axis = 0.8)
    
    R-generated plot of differences of means by cities
    Figure \(\PageIndex{4}\): Differences of means by cities plot.

    This page titled 5.2.3: Nested Model in R is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of Statistics.

    • Was this article helpful?