# 4.6.1: Classification of Finance Problems (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## SECTION 6.6 PROBLEM SET: CLASSIFICATION OF FINANCE PROBLEMS

Let the letters A, B, C, D, E and F be represented as follows:

$\begin{array}{lll}A=F V \text { of a lump-sum } & C=F V \text { of an annuity } & E=\text { Installment payment } \\ B=P V \text { of a lump-sum } & D=\text { sinking fund payment } & F=P V \text { of an annuity }\end{array} \nonumber$

Classify each by writing the appropriate letter in the box, and write an equation for solution.

1) What monthly deposits made to an account paying 9% will grow to $10,000 in 4 years? 2) An amount of$4000 is invested at 6% compounded daily. What will the final amount be in 5 years?

3) David has won a lottery paying him $10,000 per month for the next 20 years. He'd rather have the whole amount in one lump sum now. If the current interest rate is 7%, how much money can he hope to get? 4) Each month Linda deposits$250 in an account that pays 9%. How much money will she have in 4 years?

5) Find the monthly payment for a $15,000 car if the loan is amortized over 4 years at a rate of 10%. 6) What lump-sum deposited in an account paying 7% compounded daily will grow to$10,000 in 5 years?

7) What amount of quarterly payments will amount to $250,000 in 5 years at a rate of 8%? 8) The Chang family bought their house 25 years ago. They had their loan financed for 30 years at an interest rate of 11% resulting in a payment of$1350 a month. Find the balance of the loan.

A 10-year $1000 bond pays$35 every six months. If the current interest rate is 8%, in order to find the fair market value of the bond, we need to find the following.

9) The present value of $1000. 10) The present value of the$35 per six month payments.

SECTION 6.6 PROBLEM SET: CLASSIFICATION OF FINANCE PROBLEMS

$\begin{array}{lll}A=F V \text { of a lump-sum } & C=F V \text { of an annuity } & E=\text { Installment payment } \\ B=P V \text { of a lump-sum } & D=\text { sinking fund payment } & F=P V \text { of an annuity }\end{array} \nonumber$

11) What lump-sum deposit made today is equal to 33 monthly deposits of $500 if the interest rate is 8%? 12) What monthly deposits made to an account paying 10% will accumulated to$10,000 in six years?

13) A department store charges a finance charge of 1.5% per month on the outstanding balance.
If Ned charged $400 three months ago and has not paid his bill, how much does he owe? 14) What will the value of$300 monthly deposits be in 10 years if the account pays 12% compounded monthly?

15) What lump-sum deposited at 6% compounded daily will grow to $2000 in three years? 16) A company buys an apartment complex for$5,000,000 and amortizes the loan over 10 years.
What is the yearly payment if the interest rate is 14%?

17) In 2002, a house in Rock City cost $300,000. Real estate in Rock City has been increasing in value at the annual rate of 5.3%.. Find the price of that house in 2016. 18) You determine that you can afford to pay$400 per month for a car. What is the maximum price you can pay for a car if the interest rate is 11% and you want to repay the loan in 4 years?

19) A business needs $350,000 in 5 years. How much lump-sum should be put aside in an account that pays 9% so that five years from now the company will have$350,000?

20) A person wishes to have \$500,000 in a pension fund 20 years from now. How much should he deposit each month in an account paying 9% compounded monthly?

This page titled 4.6.1: Classification of Finance Problems (Exercises) is shared under a CC BY license and was authored, remixed, and/or curated by Rupinder Sekhon and Roberta Bloom.