Skip to main content
Statistics LibreTexts

3.5.1: Graphs and Properties of Logarithmic Functions (Exercises)

  • Page ID
    26516
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    SECTION 5.5 PROBLEM SET: GRAPHS AND PROPERTIES OF LOGARITHMIC FUNCTIONS

    Questions 1 – 3: For each of the following functions

    1. Sketch a reasonably accurate graph showing the shape of the graph of the function
    2. State the domain
    3. State the range
    4. State whether the graph has a vertical asymptote or a horizontal asymptote and write the equation of that asymptote
    5. Does the graph have an x-intercept or a y-intercept asymptote? Write the coordinates of the x-intercept or the y-intercept.
    1. \(y=\ln x\)
      1. Sketch the graph below
    1. domain: ________
    2. range: ________
    3. Is the asymptote horizontal or vertical? _________
      Equation of the asymptote: ________
    4. Coordinates of x-intercept or y-intercept: ________
    1. \(y=\log x\)
      1. Sketch the graph below
    1. domain: ________
    2. range: ________
    3. Is the asymptote horizontal or vertical? _________
      Equation of the asymptote: ________
    4. Coordinates of x-intercept or y-intercept: ________
    1. \(y=\log_{0.8} x\)
      1. Sketch the graph below
    1. domain: ________
    2. range: ________
    3. Is the asymptote horizontal or vertical? _________
      Equation of the asymptote: ________
    4. Coordinates of x-intercept or y-intercept: ________

    Questions 4 - 5: For the pair of inverse functions \(y = e^x\) and \(y = \ln x\)

    1. Sketch a reasonably accurate graph showing the shape of the graph of the function
    2. State the domain
    3. State the range
    4. State whether the graph has a vertical asymptote or a horizontal asymptote and write the equation of that asymptote
    5. Does the graph have an x-intercept or a y-intercept asymptote? Write the coordinates of the xintercept or the y-intercept.
    1. \(y=e^x\)
      1. Sketch the graph below
    1. domain: ________
    2. range: ________
    3. Is the asymptote horizontal or vertical? _________
      Equation of the asymptote: ________
    4. Coordinates of x-intercept or y-intercept: ________
    1. \(y=\ln x\)
      1. Sketch the graph below
    1. domain: ________
    2. range: ________
    3. Is the asymptote horizontal or vertical? _________
      Equation of the asymptote: ________
    4. Coordinates of x-intercept or y-intercept: ________

    Questions 6-11: Match the graph with the function.

    Choose the function from the list below and write it on the line underneath the graph.

    Hint: To match the function and the graph, identify these properties of the graph and function

    • Is the function increasing decreasing?
    • Examine the asymptote
    • Determine the x or y intercept

    \[\mathrm{y}=3\left(2^{x}\right) \quad y=5\left(0.4^{x}\right) \quad y=\log _{2}(x) \quad y=\log _{1 / 2}(x) \quad y=3 e^{-0.6 x} \quad y=5 e^{0.3 x} \nonumber \]

    1. Function: ________

    5.7.4Function6.png

    1. Function: ________

    5.7.4Function7.png

    1. Function: ________

    5.7.4Function8.png

    1. Function: ________

    5.7.4Function9.png

    1. Function: ________

    5.7.4Function10.png

    1. Function: ________

    5.7.4Function11.png


    This page titled 3.5.1: Graphs and Properties of Logarithmic Functions (Exercises) is shared under a not declared license and was authored, remixed, and/or curated by Rupinder Sekhon and Roberta Bloom.