Skip to main content
Statistics LibreTexts

13: Hypothesis Test for a Population Mean Given Statistics

  • Page ID
    19743
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Hypothesis Test for a Population Mean given Statistics

    This calculator performs the hypothesis test for a population mean given statistics. Please report the error to Dr. Jessica Kuang at jkuangATvcccd.edu.

    To learn how to use this calculator, please watch a short video here.

     

    Input

    Select if the population standard deviation, \(\sigma\), is known or unknown. Then fill in the sample size (\(n\)), the sample mean (\(\bar{x}\)), the standard deviation (\(s\)), the hypothesized population mean \(\mu_0\), and indicate if the test is left tailed (<), right taile (>), or two tailed (\(\neq\)), then click Calculate.

    Sample Size (\(n\)):
    Sample Mean (\(\bar{x}\)):  

    Choose the test

        \(\lt\)

        \(\gt\)

        \(\neq\)

    Hypothesized Population Mean (\(\mu_0\)):  

     

    Output

     

    (Powered by DESMOS)


    13: Hypothesis Test for a Population Mean Given Statistics is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?