13.2: A | Statistical Table- Student t Distribution
- Page ID
- 13024
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Student's \(t\) Distribution
Figure A3 Upper critical values of Student's t Distribution with v Degrees of Freedom
For selected probabilities, a, the table shows the values \(t_{v,a}\) such that \(P(t_v > t_{v,a}) = a\), where \(t_v\) is a Student’s \(t\) random variable with \(v\) degrees of freedom. For example, the probability is .10 that a Student’s \(t\) random variable with 10 degrees of freedom exceeds 1.372.
\(v\) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
---|---|---|---|---|---|---|
1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 318.313 |
2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 |
3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 |
4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 |
5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 |
6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 |
7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.782 |
8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.499 |
9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.296 |
10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.143 |
11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.024 |
12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.929 |
13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 |
14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 |
15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 |
16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 |
17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 |
18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 |
19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 |
20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 |
21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 |
22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 |
23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 |
24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 |
25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 |
26 | 1.315 | 1.706* | 2.056 | 2.479 | 2.779 | 3.435 |
27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 |
28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 |
29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 |
30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 |
40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 |
60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 |
100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 |
∞ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 |