Lemma 92.10.6. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\mathcal{P}$ be a property as in Definition 92.10.1. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism representable by algebraic spaces. Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism. Consider the $2$-fibre product diagram

If $f$ has $\mathcal{P}$, then the base change $f'$ has $\mathcal{P}$.

## Comments (0)