Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

4.4: Cardinality

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives
  • Find the cardinality of a set
  • Use cardinality properties to solve survey problems using a Venn diagram

Often times we are interested in the number of items in a set or subset. This is called the cardinality of the set.

Cardinality

The number of elements in a set is the cardinality of that set.

The cardinality of the set A is often notated as |A| or n(A).

Note: a set can be finite or infinite. A finite set will have a cardinality of 0 or a natural number. An infinite set has a cardinality of the form 0 (aleph null), which represents the cardinality of the natural numbers.

Example 4.4.1

Let A={1,2,3,4,5,6} and B={2,4,6,8}.

Find the cardinality of:

  1. B
  2. AB
  3. AB
Solution
  1. The cardinality of B is 4, since there are 4 elements in the set.
  2. The cardinality of AB is 7, since AB={1,2,3,4,5,6,8}, which contains 7 elements.
  3. The cardinality of AB is 3 , since AB={2,4,6}, which contains 3 elements.

Example 4.4.2

What is the cardinality of P= the set of English names for the months of the year?

Solution

The cardinality of this set is 12, since there are 12 months in the year.

Sometimes we may be interested in the cardinality of the union or intersection of sets, but not know the actual elements of each set. This is common in surveying.

Example 4.4.3

A survey asks 200 people “What beverage do you drink in the morning?”, and offers choices:

  • Tea only
  • Coffee only
  • Both coffee and tea

Suppose 20 report tea only, 80 report coffee only, 40 report both. How many people drink tea in the morning? How many people drink neither tea or coffee?

Solutionclipboard_e4a799fb2a4fd730e81cbde00737b2dda.png

This question can most easily be answered by creating a Venn diagram. We can see that we can find the people who drink tea by adding those who drink only tea to those who drink both: 60 people.

We can also see that those who drink neither are those not contained in the any of the three other groupings, so we can count those by subtracting from the cardinality of the universal set, 200.

200208040=60 people who drink neither.

Example 4.4.4

A survey asks: Which social media have you used in the last month?

  • Twitter
  • Facebook
  • Have used both

The results show 40% of those surveyed have used Twitter, 70% have used Facebook, and 20% have used both. How many people have used neither Twitter nor Facebook?

Solution

Let T be the set of all people who have used Twitter, and F be the set of all people who have used Facebook. Notice that while the cardinality of F is 70% and the cardinality of T is 40%, the cardinality of FT is not simply 70%+40%, since that would count those who use both services twice. To find the cardinality of FT, we can add the cardinality of F and the cardinality of T, then subtract those in intersection that we've counted twice. In symbols,

n(FT)=n(F)+n(T)n(FT)

n(FT)=70%+40%20%=90%

Now, to find how many people have not used either service, we're looking for the cardinality of (FT). Since the universal set contains 100% of people and the cardinality of FT=90%, the cardinality of (FT) must be the other 10%.

The previous example illustrated two important properties.

Cardinality properties

n(AB)=n(A)+n(B)n(AB)

n(A)=n(U)n(A)

Notice that the first property can also be written in an equivalent form by solving for the cardinality of the intersection:

n(AB)=n(A)+n(B)n(AB)

Example 4.4.5

Fifty students were surveyed, and asked if they were taking a social science (SS), humanities (HM) or a natural science (NS) course the next semester.

21 were taking a SS course26 were taking a HM course19 were taking a NS course9 were taking SS and HM7 were taking SS and NS10 were taking HM and NS3 were taking all three7 were taking none

How many students are only taking a SS course?

Solution

clipboard_e7d93dd2c9298a1e569b2a03a2ca7591a.pngIt might help to look at a Venn diagram.

From the given data, we know that there are 3 students in region e and 7 students in region h.

Since 7 students were taking a SS and NS course, we know that n(d)+n(e)=7. Since we know there are 3 students in region e, there must be 73=4 students in region d.

Similarly, since there are 10 students taking HM and NS, which includes regions e and f, there must be 103=7 students in region f.

Since 9 students were taking SS and HM, there must be 93=6 students in region b.

Now, we know that 21 students were taking a SS course. This includes students from regions a,b,d, and e. Since we know the number of students in all but region a, we can determine that 21643=8 students are in region a.

Thus, 8 students are taking only a SS course.

Try It 4.4.1

One hundred fifty people were surveyed and asked if they believed in UFOs, ghosts, and Bigfoot.

43 believed in UFOs44 believed in ghosts25 believed in Bigfoot10 believed in UFOs and ghosts8 believed in ghosts and Bigfoot5 believed in UFOs and Bigfoot2 believed in all three

How many people surveyed believed in at least one of these things?

Answer

Starting with the intersection of all three circles, we work our way out. Since 10 people believe in UFOs and ghosts, and 2 believe in all three, that leaves 8 that believe in only UFOs and ghosts. We work our way out, filling in all the regions. Once we have, we can add up all those regions, getting 91 people in the union of all three sets. This leaves 15091=59 who believe in none.

Thus, 91 people believed in at least one of these things.

clipboard_e8db2cbb7bab5f97bb8027875dd84439a.png


This page titled 4.4: Cardinality is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Lippman (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?