# 16.E: Transformations (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## General Questions

### Q1

When is a log transformation valuable?

### Q2

If the arithmetic mean of $$\log_{10}$$ transformed data were $$3$$, what would be the geometric mean?

### Q3

Using Tukey's ladder of transformation, transform the following data using a $$λ$$ of $$0.5: 9, 16, 25$$

### Q4

What value of $$λ$$ in Tukey's ladder decreases skew the most?

### Q5

What value of $$λ$$ in Tukey's ladder increases skew the most?

## Question from Case Study

### Q6

In the ADHD case study, transform the data in the placebo condition ($$D0$$) with $$λ's$$ of $$0.5$$, $$0$$, $$-0.5$$, and $$-1$$. How does the skew in each of these compare to the skew in the raw data. Which transformation leads to the least skew?

This page titled 16.E: Transformations (Exercises) is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.