Skip to main content
Statistics LibreTexts

3: Linear Regression

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Quick review of equations for lines:

    Recall the equation of a line is usually in the form \(y = mx + b\), where \(x\) and \(y\) are variables and m and b are numbers. Some basic facts about lines:

    • If you are given a number for x, you can plug it in to the equation \(y=mx+b\) to get a number for \(y\), which together give you a point with coordinates (x, y) that is on the line.
    • m is the slope, which tells how much the line goes up (increasing y) for every unit you move over to the right (increasing x) – we often say that the value of the slope is \(\ m=\frac{rise}{run}\).
      • positive, if the line is tilted up,
      • negative, if the line is tilted down,
      • zero, if the line is horizontal, and
      • undefined, if the line is vertical.
    • You can calculate the slope by finding the coordinates (x1, y1) and (x2, y2) of any y2 −y1 two points on the line and then \(\ m = \frac{y_2 - y_1}{x_2 - x_1}\).
    • In particular, x2−x1=1,then \(\ m =\frac{y_2 - y_1}{1} = y_2 - y_1\) - so if you look at how much the line goes up in each step of one unit to the right, that number will be the slope m (and if it goes down, the slope m will simply be negative). In other words, the slope answers the question “for each step to the right, how much does the line increase (or decrease)?”
    • b is the y-intercept, which tells the y-coordinate of the point where the line crosses the y-axis. Another way of saying that is that b is the y value of the line when the x is 0.

    This page titled 3: Linear Regression is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jonathan A. Poritz via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.