Skip to main content
Statistics LibreTexts

5: Continuous Random Variables

  • Page ID
    503
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A random variable is called continuous if its set of possible values contains a whole interval of decimal numbers. In this chapter we investigate such random variables.

    • 5.1: Continuous Random Variables
      For a discrete random variable X the probability that X assumes one of its possible values on a single trial of the experiment makes good sense. This is not the case for a continuous random variable. With continuous random variables one is concerned not with the event that the variable assumes a single particular value, but with the event that the random variable assumes a value in a particular interval.
    • 5.2: The Standard Normal Distribution
      A standard normal random variable \(Z\) is a normally distributed random variable with mean \(\mu =0\) and standard deviation \(\sigma =1\).
    • 5.3: Probability Computations for General Normal Random Variables
      Probabilities for a general normal random variable are computed after converting \(x\)-values to \(z\)-scores.
    • 5.4: Areas of Tails of Distributions
      The left tail of a density curve y=f(x) of a continuous random variable X cut off by a value x* of X is the region under the curve that is to the left of x*. The right tail cut off by x* is defined similarly.
    • 5.E: Continuous Random Variables (Exercises)
      hese are homework exercises to accompany the Textmap created for "Introductory Statistics" by Shafer and Zhang.


    This page titled 5: Continuous Random Variables is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.