Experimental Design and Introduction to Analysis of Variance (LN 3)
- Page ID
- 208
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)An overview of experimental designs
1. Complete randomized design (CRD): treatments (combinations of the factor levels of the different factors) are randomly assigned to the experimental units.Solvent conc. | Temperature | ||
low | medium | high | |
low | x | x | x |
high | x | x | x |
Table 1: Chemical yield study: Crossed factor design
3. Nested design: one factor is nested within another factor in a multi-factor study.
Plant | Operator | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
1 | x | x | ||||
2 | x | x | ||||
3 | x | x |
Table 2: Production study: Nested design
4. Repeated measurement design: the same experimental unit receives all the treatment combinations. This helps to eliminate the effects of confounding factors associated with the experimental units.
An overview of observational studies
1. Cross sectional studies : measurements are taken from one or more populations or subpopulations at a single time point or time interval; and exposure to a potential causal factor and the response are determined simultaneously.A single factor study
A food company wanted to test four different package designs for a new break-fast cereal. 20 stores with approximately the same sales condition (such as sales volume, price, etc) were selected as experimental units. Five stores were randomly assigned to each of the 4 package designs.- A balanced complete randomized design.
- A single, 4-level, qualitative factor: package design;
- A quantitative response variable: sales -- number of packets of cereal sold during the period of study;
- Goal: exploring relationship between package design and sales.
Data
The assignment of the different stores (indicated by letters A to T) to the package designs (D1 to D4) is given in the following table.Store IDs | ||||||
S1 | S2 | S3 | S4 | S5 | ||
D1 | A | B | C | D | E | |
Design | D2 | F | G | H | I | J |
D3 | K | L | M | N | O | |
D4 | P | Q | R | S | T |
Store IDs | ||||||
S1 | S2 | S3 | S4 | S5 | ||
D1 | 11 | 17 | 16 | 14 | 15 | |
Design | D2 | 12 | 10 | 15 | 19 | 11 |
D3 | 23 | 20 | 18 | 17 | Miss | |
D4 | 27 | 33 | 22 | 26 | 28 |
ANOVA for single factor study
A simple statistical model the data is as follows: $$ \large Y_{ij} = \mu_i + \varepsilon_{ij}, \qquad j=1,\ldots,n_i; ~~i=1,\ldots,r ; $$ where:- \(r \) is the number of factor levels (treatments) and \(n_i\) is the number of experimental units corresponding to the \(i\)-th factor level;
- \(Y_{ij}\) is the measurement for the \(j\)-th experimental unit corresponding to the \(i\)-th factor level;
- \( \mu_i\) is the mean of all the measurements corresponding to the \(i\)-th factor level (unknown);
- \(\varepsilon_{ij}\)'s are random errors (unobserved).
Model Assumptions
The following assumptions are made about the previous model:- \(\varepsilon_{ij}\) are independently and identically distributed as \(N(0,\sigma^2)\).
- \( \mu_i\) 's are unknown fixed parameters (so called fixed effects), so that \(\mathbb{E}(Y_{ij}) = \mu_i\) and Var \((Y_{ij}) = \sigma^2\) . The above assumption is thus equivalent to assuming that \(Y_{ij}\) are independently distributed as \(N(\mu_i,\sigma^2)\).
Interpretations
- Factor level means (\(\mu_i\)): in an experimental study, the factor level mean \(\mu_i\) stands for the mean response that would be obtained if the \(i\)-th factor level were applied to the entire population from where the experimental units were sampled
- Residual variance (\(\sigma^2\)) : refers to the variability among the responses if any given treatment were applied to the entire population.
Steps in the anyalysis of factor level means
- Determine whether or not the factor level means are all the same: \( \large \mu_1=\cdots=\mu_r \)
- What does \(\mu_1=\cdots=\mu_r\) mean? The factor has no effect on the distribution of the response variable.
- How to evaluate the evidence of this statement \(\mu_1=\cdots=\mu_r\) based on observed data ?
2. If the factor level means do differ, examine how they differ and what are the implications of these differences? (Chapter 17)
In the example, we want to answer whether there is any effect of package design on sales. First step is the obtain estimates of the factor level means.Estimation of \(\mu_i\)
Define, the sample mean for the \(i\)-th factor level: $$ \large \overline{Y}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} = \frac{1}{n_i} Y_{i\cdot} $$ where \(Y_{i\cdot} = \sum_{j=1}^{n_i} Y_{ij}\) is the sum of responses for the \(i\)-th treatment group, for \(i=1,\ldots,r\); and the overall sample mean: $$ \large \overline{Y}_{\cdot\cdot} = \frac{1}{\sum_{i=1}^r n_i} \sum_{i=1}^r \sum_{j=1}^{n_i} Y_{ij} = \frac{1}{\sum_{i=1}^r n_i} \sum_{i=1}^r n_i \overline{Y}_{i\cdot} = \frac{1}{\sum_{i=1}^r n_i} Y_{\cdot\cdot}~. $$ Then \( \overline{Y}_{i\cdot}\) is an estimate of \( \mu_i\) for each \(i=1,\ldots,I\). Under the assumptions, \(\overline{Y}_{i\cdot}\) is an unbiased estimator of \(\mu_i\) since $$ \large \mathbb{E}(\overline{Y}_{i\cdot}) = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbb{E}(Y_{ij}) = \frac{1}{n_i} \sum_{j=1}^{n_i} \mu_i = \mu_i. $$Store IDs | Total | Mean | \( n_i \) | ||||||
S1 | S2 | S3 | S4 | S5 | ( \(Y_{i.} \) ) | ( \( \overline{Y_{i.}} \) | |||
D1 | 11 | 17 | 16 | 14 | 15 | 73 | 14.6 | 5 | |
Design | D2 | 12 | 10 | 15 | 19 | 11 | 67 | 13.4 | 5 |
D3 | 23 | 20 | 18 | 17 | Miss | 78 | 19.5 | 4 | |
D4 | 27 | 33 | 22 | 26 | 28 | 136 | 27.2 | 5 | |
Total | \(Y_{..} = 354 \) | \( \overline{Y}_{..} = 18.63 \) | 19 |
Pairwise comparison of factor level means
Suppose we want to compare Designs 1 and 2. We can formulate this as a hypothesis testing problem for the following hypothesis: \( H_0 : \mu_1 = \mu_2\) against \( H_a : \mu_1 \neq \mu_2\). The standard test procedure is the two-sample \(z\) -test described below (assuming for the time being that \(\sigma\) is known).- Null hypothesis \( \large H_0 : \mu_1 = \mu_2\) tested against alternative hypothesis \( \large H_a : \mu_1 \neq \mu_2\).
- The test procedure essentially asks the following question: is the observed difference \( \overline{Y}_{1\cdot} - \overline{Y}_{2\cdot}\) large enough to support the hypothesis \( H_a : \mu_1 \neq \mu_2\) ?
- The \(z\)-test statistic for \(H_0 : \mu_1 = \mu_2\) vs. \(H_a : \mu_1 \neq \mu_2\) is
Contributors:
- Valerie Regalia
- Debashis Paul