Analysis of a balanced two factor ANOVA model
- Page ID
- 204
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
1 Analysis of a balanced two factor ANOVA model
$$\alpha$$
Model:
\(Y_{ijk}=\mu_{\cdot\cdot}+\alpha_i+\beta_j+(\alpha\beta)_{ij}+\epsilon_{ijk}, \qquad i=1,\cdots,a; ~~j=1,\cdots,b; ~k=1,\cdots,n, (1)\)
$$\begin{equation}\label{eq:two_factor_ANOVA} Y_{ijk}=\mu_{\cdot\cdot}+\alpha_i+\beta_j+(\alpha\beta)_{ij}+\epsilon_{ijk}, \qquad i=1,\cdots,a; ~~j=1,\cdots,b; ~k=1,\cdots,n, \end{equation}$$where
- \(\mu..\), \(\alpha_i\)'s \(\beta_j\)'s and (\(alpha\beta)_{ij}\)'s are unknown parameters (fixed effects) subject to identifiability constraints:
$$ \sum_{i=1}^a \alpha_i=0, \sum_{j=1}^b \beta_j=0 (2) $$
$$ \sum_{i=1}^a (\alpha\beta)_{ij}=0, ~~j=1,\cdots,b; \sum_{j=1}^b (\alpha\beta)_{ij}=0, ~~ i=1,\cdots,a . (3) $$
- Distributional assumption : \(\epsilon_{ijk}\) are i.i.d. (independently and identically distributed) as N(0, \(\sigma^2\)).
- In another word, \(Y_{ijk}\)'s are independent random variables with normal distribution with
$$ \mu_{ij} := \mathbb{E}(Y_{ijk}) = \mu_{\cdot\cdot}+\alpha_i+\beta_j+(\alpha\beta)_{ij}, $$
and Var(\(Y_{ijk}\)) = \(\sigma^2\), where \(\alpha_i\)'s, \(\beta_j\)'s and \((\alpha\beta)_{ij}\)'s are subject to the identifiability constnraints (2) and (3).
1.1 Point estimates of the population means
We estimate the population means by the corresponding sample means.
$$
\overline{Y}_{ij\cdot}&=&\frac{1}{n}\sum_{k=1}^n Y_{ijk} &\longrightarrow&
\mu_{ij}=\mu_{\cdot\cdot}+\alpha_i+\beta_j+(\alpha\beta)_{ij}\\
\overline{Y}_{i\cdot\cdot}&=&\frac{1}{bn}\sum_{j=1}^b\sum_{k=1}^nY_{ijk}
&\longrightarrow& \mu_{i\cdot}=\mu_{\cdot\cdot}+\alpha_i\\
\overline{Y}_{\cdot j\cdot}&=&\frac{1}{an}\sum_{i=1}^a\sum_{k=1}^nY_{ijk}
&\longrightarrow& \mu_{\cdot j}=\mu_{\cdot\cdot}+\beta_j\\
\overline{Y}_{\cdots}&=&\frac{1}{abn}\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^nY_{ijk}
&\longrightarrow& \mu_{\cdot\cdot}
$$
The effects (main effects and interaction effects) can be estimated accordingly.
$$
\widehat{\alpha}_i$ & $:= \overline{Y}_{i\cdot\cdot}-\overline{Y}_{\cdots}
& \longrightarrow \alpha_i=\mu_{i\cdot}-\mu_{\cdot\cdot}\\
\widehat{\beta}_j & := \overline{Y}_{\cdot j\cdot}-\overline{Y}_{\cdots} &
\longrightarrow \beta_j=\mu_{\cdot j}-\mu_{\cdot\cdot} \\
\widehat{(\alpha\beta)}_{ij} &
:=\overline{Y}_{ij\cdot}-\overline{Y}_{\cdots}-(\overline{Y}_{i\cdot\cdot}-\overline{Y}_{\cdots})-(\overline{Y}_{\cdot
j\cdot}-\overline{Y}_{\cdots}) & \\
& =\overline{Y}_{ij\cdot}-\overline{Y}_{i\cdot\cdot}-\overline{Y}_{\cdot
j\cdot}+\overline{Y}_{\cdots} & \longrightarrow
(\alpha\beta)_{ij}=\mu_{ij}-\alpha_i-\beta_j+\mu_{\cdot\cdot}
$$
1.2 ANOVA decomposition of sum squares
Basic decomposition:
$$ SSTO = SSTR + SSE. $$
where
$$
SSTO &=& \sum_{i=1}^a\sum_{j=1}^b \sum_{k=1}^n (Y_{ijk} -
\overline{Y}_{\cdots})^2 \\
SSTR &=& n \sum_{i=1}^a \sum_{j=1}^b (\overline{Y}_{ij\cdot} -
\overline{Y}_{\cdots})^2\\
SSE &=& \sum_{i=1}^a\sum_{j=1}^b \sum_{k=1}^n (Y_{ijk} -
\overline{Y}_{ij\cdot})^2
$$
Contributors
- Yingwen Li (UCD)
- Debashis Paul (UCD)