Skip to main content
Statistics LibreTexts

11.9: BG ANOVA Practice Exercises

  • Page ID
    18095
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    What are the three pieces of variance analyzed in ANOVA? 

    Answer

    Variance between groups (\(SSB\)), variance within groups (\(SSW\)) and total variance (\(SST\)).

     

    Exercise \(\PageIndex{2}\)

    What is the purpose of post hoc tests?

    Answer

    Post hoc tests are run if we reject the null hypothesis in ANOVA; they tell us which specific group differences are significant.

    Exercise \(\PageIndex{3}\)

    Based on the ANOVA table below, do you reject or retain the null hypothesis?  

    Table \(\PageIndex{1}\)- ANOVA Summary Table
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 60.72 3 20.24 3.88
    Within 213.61 41 5.21  
    Total 274.33 44    
    Answer

    The null hypothesis should be rejected (F(3,41) = 3.88, p < .05 because the calculated F-score is larger (more extreme) than the critical F-score found in the Critical Values of F table with df's of 3 and 40 (Fcrit = 2.23)   

    Exercise \(\PageIndex{4}\)

    Finish filling out the following ANOVA tables:

    1. \(K = 4\)
    Table \(\PageIndex{2}\)- ANOVA Summary Table with Missing Results
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 87.40      
    Within        
    Total 199.22 33  
    1. \(N=14\)
    Table \(\PageIndex{3}\)- ANOVA Summary Table with Missing Numbers
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between   2 14.10  
    Within        
    Total 64.65    
    1.  
    Table \(\PageIndex{4}\)- ANOVA Summary Table with Missing Results
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between   2   42.36
    Within   54 2.48  
    Total      
     
     
    Answer:
    1. \(K=4\)
    Table \(\PageIndex{5}\)- Completed ANOVA Summary Table for a.
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 87.40 3 29.13 7.81
    Within 111.82 30 3.73 leave blank
    Total 199.22 33 leave blank leave blank
    1. \(N=14\)
    Table \(\PageIndex{6}\)- Completed ANOVA Summary Table for b.
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 28.20 2 14.10 4.26
    Within 36.45 11 3.31 leave blank
    Total 64.65 13 leave blank leave blank
    1.  
    Table \(\PageIndex{6}\)- Completed ANOVA Summary Table for c.
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 210.10 2 105.05 42.36
    Within 133.92 54 2.48 leave blank
    Total 344.02 56 leave blank leave blank

     

    Exercise \(\PageIndex{5}\)

    You and your friend are debating which type of candy is the best. You find data on the average rating for hard candy (e.g. jolly ranchers, \(\overline{\mathrm{X}}\)= 3.60), chewable candy (e.g. starburst, \(\overline{\mathrm{X}}\) = 4.20), and chocolate (e.g. snickers, \(\overline{\mathrm{X}}\)= 4.40); each type of candy was rated by 30 people. Test for differences in average candy rating using SSB = 16.18 and SSW = 28.74 with no research hypothesis (so you don't have to do pairwise comparisons if you reject the null hypotheses). 

    Answer

    Step 1: \(H_0: μ_1 = μ_2 = μ_3\) “There is no difference in average rating of candy quality”, \(H_A\): “At least one mean is different.”

    Step 2: 3 groups and 90 total observations yields \(df_{num} = 2\) and \(df_{den} = 87\), \(α = 0.05\), \(F^* = 3.11\).

    Step 3: based on the given \(SSB\) and \(SSW\) and the computed \(df\) from step 2, is:

    Table \(\PageIndex{7}\)- Completed ANOVA Summary Table
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 16.18 2 8.09 24.52
    Within 28.74 87 0.33 leave blank
    Total 44.92 89 leave blank leave blank

    Step 4: \(F > F^*\), reject \(H_0\). Based on the data in our 3 groups, we can say that there is a statistically significant difference in the quality of different types of candy, \(F(2,87) = 24.52, p < .05\). 

    Exercise \(\PageIndex{6}\)

    You are assigned to run a study comparing a new medication (\(\overline{\mathrm{X}}\)= 17.47, \(n\) = 19), an existing medication (\(\overline{\mathrm{X}}\)= 17.94, \(n\) = 18), and a placebo (\(\overline{\mathrm{X}}\)= 13.70, \(n\) = 20), with higher scores reflecting better outcomes. Use \(SSB = 210.10\) and \(SSW = 133.90\) to test for differences with no research hypothesis (so you don't have to do pairwise comparisons if you reject the null hypotheses).

    Answer

    Step 1: \(H_0: μ_1 = μ_2 = μ_3\) “There is no difference in average outcome based on treatment”, \(H_A\): “At least one mean is different.”

    Step 2: 3 groups and 57 total participants yields \(df_{num} = 2\) and \(df_{den} = 54\), \(α = 0.05, F^* = 3.18\).

    Step 3: based on the given \(SSB\) and \(SSW\) and the computed \(df\) from step 2, is:

    Table \(\PageIndex{8}\)- Completed ANOVA Summary Table
    Source \(SS\) \(df\) \(MS\) \(F\)
    Between 210.10 2 105.02 42.36
    Within 133.90 54 2.48 leave blank
    Total 344.00 56 leave blank leave blank

    Step 4: \(F > F^*\), reject \(H_0\). Based on the data in our 3 groups, we can say that there is a statistically significant difference in the effectiveness of the treatments, \(F(2,54) = 42.36, p < .05\).

    Contributors and Attributions

    • Foster et al. (University of Missouri-St. Louis, Rice University, & University of Houston, Downtown Campus)


    This page titled 11.9: BG ANOVA Practice Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Michelle Oja.

    • Was this article helpful?