Skip to main content
Library homepage
 
Loading table of contents menu...
Statistics LibreTexts

11.0: Prelude to The Chi-Square Distribution

  • Page ID
    11009
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    CHAPTER OBJECTIVES

    By the end of this chapter, the student should be able to:

    • Interpret the chi-square probability distribution as the sample size changes.
    • Conduct and interpret chi-square goodness-of-fit hypothesis tests.
    • Conduct and interpret chi-square test of independence hypothesis tests.
    • Conduct and interpret chi-square homogeneity hypothesis tests.
    • Conduct and interpret chi-square single variance hypothesis tests.

    Have you ever wondered if lottery numbers were evenly distributed or if some numbers occurred with a greater frequency? How about if the types of movies people preferred were different across different age groups? What about if a coffee machine was dispensing approximately the same amount of coffee each time? You could answer these questions by conducting a hypothesis test.

    You will now study a new distribution, one that is used to determine the answers to such questions. This distribution is called the chi-square distribution.

    CNX_Stats_C11_CO.jpg
    Figure \(\PageIndex{1}\): The chi-square distribution can be used to find relationships between two things, like grocery prices at different stores. (credit: Pete/flickr)

    In this chapter, you will learn the three major applications of the chi-square distribution:

    1. the goodness-of-fit test, which determines if data fit a particular distribution, such as in the lottery example
    2. the test of independence, which determines if events are independent, such as in the movie example
    3. the test of a single variance, which tests variability, such as in the coffee example

    Though the chi-square distribution depends on calculators or computers for most of the calculations, there is a table available (see [link]). TI-83+ and TI-84 calculator instructions are included in the text.

    COLLABORATIVE CLASSROOM EXERCISE

    Look in the sports section of a newspaper or on the Internet for some sports data (baseball averages, basketball scores, golf tournament scores, football odds, swimming times, and the like). Plot a histogram and a boxplot using your data. See if you can determine a probability distribution that your data fits. Have a discussion with the class about your choice.


    This page titled 11.0: Prelude to The Chi-Square Distribution is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.