# 6.E: The Standard Normal Distribution (Optional Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
##### Exercise $$\PageIndex{7}$$

A bottle of water contains 12.05 fluid ounces with a standard deviation of 0.01 ounces. Define the random variable $$X$$ in words. $$X =$$ ____________.

ounces of water in a bottle

##### Exercise $$\PageIndex{8}$$

A normal distribution has a mean of 61 and a standard deviation of 15. What is the median?

##### Exercise $$\PageIndex{9}$$

$$X \sim N(1, 2)$$

$$\sigma =$$ _______

2

##### Exercise $$\PageIndex{10}$$

A company manufactures rubber balls. The mean diameter of a ball is 12 cm with a standard deviation of 0.2 cm. Define the random variable $$X$$ in words. $$X =$$ ______________.

##### Exercise $$\PageIndex{11}$$

$$X \sim N(-4, 1)$$

What is the median?

–4

##### Exercise $$\PageIndex{12}$$

$$X \sim N(3, 5)$$

$$\sigma =$$ _______

##### Exercise $$\PageIndex{13}$$

$$X \sim N(-2, 1)$$

$$\mu =$$ _______

–2

##### Exercise $$\PageIndex{14}$$

What does a $$z$$-score measure?

##### Exercise $$\PageIndex{15}$$

What does standardizing a normal distribution do to the mean?

The mean becomes zero.

##### Exercise $$\PageIndex{16}$$

Is $$X \sim N(0, 1)$$ a standardized normal distribution? Why or why not?

##### Exercise $$\PageIndex{17}$$

What is the $$z$$-score of $$x = 12$$, if it is two standard deviations to the right of the mean?

$$z = 2$$

##### Exercise $$\PageIndex{18}$$

What is the $$z$$-score of $$x = 9$$, if it is 1.5 standard deviations to the left of the mean?

##### Exercise $$\PageIndex{19}$$

What is the $$z$$-score of $$x = -2$$, if it is 2.78 standard deviations to the right of the mean?

$$z = 2.78$$

##### Exercise $$\PageIndex{20}$$

What is the $$z$$-score of $$x = 7$$, if it is 0.133 standard deviations to the left of the mean?

##### Exercise $$\PageIndex{21}$$

Suppose $$X \sim N(2, 6)$$. What value of x has a z-score of three?

$$x = 20$$

##### Exercise $$\PageIndex{22}$$

Suppose $$X \sim N(8, 1)$$. What value of $$x$$ has a $$z$$-score of –2.25?

##### Exercise $$\PageIndex{23}$$

Suppose $$X \sim N(9, 5)$$. What value of $$x$$ has a $$z$$-score of –0.5?

$$x = 6.5$$

##### Exercise $$\PageIndex{24}$$

Suppose $$X \sim N(2, 3)$$. What value of $$x$$ has a $$z$$-score of –0.67?

##### Exercise $$\PageIndex{25}$$

Suppose $$X \sim N(4, 2)$$. What value of $$x$$ is 1.5 standard deviations to the left of the mean?

$$x = 1$$

##### Exercise $$\PageIndex{26}$$

Suppose $$X \sim N(4, 2)$$. What value of $$x$$ is two standard deviations to the right of the mean?

##### Exercise $$\PageIndex{27}$$

Suppose $$X \sim N(8, 9)$$. What value of $$x$$ is 0.67 standard deviations to the left of the mean?

$$x = 1.97$$

##### Exercise $$\PageIndex{28}$$

Suppose $$X \sim N(-1, 12)$$. What is the $$z$$-score of $$x = 2$$?

##### Exercise $$\PageIndex{29}$$

Suppose $$X \sim N(12, 6)$$. What is the $$z$$-score of $$x = 2$$?

$$z = –1.67$$

##### Exercise $$\PageIndex{30}$$

Suppose $$X \sim N(9, 3)$$. What is the $$z$$-score of $$x = 9$$?

##### Exercise $$\PageIndex{31}$$

Suppose a normal distribution has a mean of six and a standard deviation of 1.5. What is the $$z$$-score of $$x = 5.5$$?

$$z \approx –0.33$$

##### Exercise $$\PageIndex{32}$$

In a normal distribution, $$x = 5$$ and $$z = –1.25$$. This tells you that $$x = 5$$ is ____ standard deviations to the ____ (right or left) of the mean.

##### Exercise $$\PageIndex{33}$$

In a normal distribution, $$x = 3$$ and $$z = 0.67$$. This tells you that $$x = 3$$ is ____ standard deviations to the ____ (right or left) of the mean.

0.67, right

##### Exercise $$\PageIndex{34}$$

In a normal distribution, $$x = –2$$ and $$z = 6$$. This tells you that $$z = –2$$ is ____ standard deviations to the ____ (right or left) of the mean.

##### Exercise $$\PageIndex{35}$$

In a normal distribution, $$x = –5$$ and $$z = –3.14$$. This tells you that $$x = –5$$ is ____ standard deviations to the ____ (right or left) of the mean.

3.14, left

##### Exercise $$\PageIndex{36}$$

In a normal distribution, $$x = 6$$ and $$z = –1.7$$. This tells you that $$x = 6$$ is ____ standard deviations to the ____ (right or left) of the mean.

##### Exercise $$\PageIndex{37}$$

About what percent of $$x$$ values from a normal distribution lie within one standard deviation (left and right) of the mean of that distribution?

##### Exercise $$\PageIndex{38}$$

About what percent of the $$x$$ values from a normal distribution lie within two standard deviations (left and right) of the mean of that distribution?

##### Exercise $$\PageIndex{39}$$

About what percent of $$x$$ values lie between the second and third standard deviations (both sides)?

##### Exercise $$\PageIndex{40}$$

Suppose $$X \sim N(15, 3)$$. Between what $$x$$ values does 68.27% of the data lie? The range of $$x$$ values is centered at the mean of the distribution (i.e., 15).

##### Exercise $$\PageIndex{41}$$

Suppose $$X \sim N(-3, 1)$$. Between what $$x$$ values does 95.45% of the data lie? The range of $$x$$ values is centered at the mean of the distribution (i.e., –3).

between –5 and –1

##### Exercise $$\PageIndex{42}$$

Suppose $$X \sim N(-3, 1)$$. Between what $$x$$ values does 34.14% of the data lie?

##### Exercise $$\PageIndex{43}$$

About what percent of $$x$$ values lie between the mean and three standard deviations?

##### Exercise $$\PageIndex{44}$$

About what percent of $$x$$ values lie between the mean and one standard deviation?

##### Exercise $$\PageIndex{45}$$

About what percent of $$x$$ values lie between the first and second standard deviations from the mean (both sides)?

##### Exercise $$\PageIndex{46}$$

About what percent of $$x$$ values lie between the first and third standard deviations(both sides)?

Use the following information to answer the next two exercises: The life of Sunshine CD players is normally distributed with mean of 4.1 years and a standard deviation of 1.3 years. A CD player is guaranteed for three years. We are interested in the length of time a CD player lasts.

##### Exercise $$\PageIndex{47}$$

Define the random variable $$X$$ in words. $$X =$$ _______________.

##### Exercise $$\PageIndex{48}$$
$$X \sim$$ _____(_____,_____)