Skip to main content
Statistics LibreTexts

11.8: Lab 1: Chi-Square Goodness-of-Fit (Worksheet)

  • Page ID
    6553
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Name: ______________________________

    Section: _____________________________

    Student ID#:__________________________

    Work in groups on these problems. You should try to answer the questions without referring to your textbook. If you get stuck, try asking another group for help.

    Student Learning Outcome

    • The student will evaluate data collected to determine if they fit either the uniform or exponential distributions.

    Collect the Data

    Go to your local supermarket. Ask 30 people as they leave for the total amount on their grocery receipts. (Or, ask three cashiers for the last ten amounts. Be sure to include the express lane, if it is open.)

    You may need to combine two categories so that each cell has an expected value of at least five.

    1. Record the values.
      __________ __________ __________ __________ __________
      __________ __________ __________ __________ __________
      __________ __________ __________ __________ __________
      __________ __________ __________ __________ __________
      __________ __________ __________ __________ __________
      __________ __________ __________ __________ __________
    2. Construct a histogram of the data. Make five to six intervals. Sketch the graph using a ruler and pencil. Scale the axes.
      Blank graph with relative frequency on vertical
      Figure 11.8.1.
    3. Calculate the following:
      1. \(\bar{x} =\)________
      2. \(s =\) ________
      3. \(s^{2} =\) ________

    Uniform Distribution

    Test to see if grocery receipts follow the uniform distribution.

    1. Using your lowest and highest values, \(X \sim U (\)_______, _______\()\)
    2. Divide the distribution into fifths.
    3. Calculate the following:
      1. lowest value = _________
      2. 20th percentile = _________
      3. 40th percentile = _________
      4. 60th percentile = _________
      5. 80th percentile = _________
      6. highest value = _________
    4. For each fifth, count the observed number of receipts and record it. Then determine the expected number of receipts and record that.
      Fifth Observed Expected
      1st    
      2nd    
      3rd    
      4th    
      5th    
    5. \(H_{0}\): ________
    6. \(H_{a}\): ________
    7. What distribution should you use for a hypothesis test?
    8. Why did you choose this distribution?
    9. Calculate the test statistic.
    10. Find the \(p\text{-value}\).
    11. Sketch a graph of the situation. Label and scale the x-axis. Shade the area corresponding to the \(p\text{-value}\).
      Blank graph with vertical and horizontal axes.
      Figure 11.6.2.
    12. State your decision.
    13. State your conclusion in a complete sentence.

    Exponential Distribution

    Test to see if grocery receipts follow the exponential distribution with decay parameter \(\frac{1}{\bar{x}}\).

    1. Using \(\frac{1}{\bar{x}}\) as the decay parameter, \(X \sim \text{Exp}(\)_________\()\).
    2. Calculate the following:
      1. lowest value = ________
      2. first quartile = ________
      3. 37th percentile = ________
      4. median = ________
      5. 63rd percentile = ________
      6. 3rd quartile = ________
      7. highest value = ________
    3. For each cell, count the observed number of receipts and record it. Then determine the expected number of receipts and record that.
      Cell Observed Expected
      1st    
      2nd    
      3rd    
      4th    
      5th    
      6th    
    4. \(H_{0}\): ________
    5. \(H_{a}\): ________
    6. What distribution should you use for a hypothesis test?
    7. Why did you choose this distribution?
    8. Calculate the test statistic.
    9. Find the \(p\text{-value}\).
    10. Sketch a graph of the situation. Label and scale the x-axis. Shade the area corresponding to the \(p\text{-value}\).
      Blank graph with vertical and horizontal axes.
      Figure 11.6.3.
    11. State your decision.
    12. State your conclusion in a complete sentence.

    Discussion Questions

    1. Did your data fit either distribution? If so, which?
    2. In general, do you think it’s likely that data could fit more than one distribution? In complete sentences, explain why or why not.

    This page titled 11.8: Lab 1: Chi-Square Goodness-of-Fit (Worksheet) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.