# 3.6E: Exercises for Section 3.5

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In exercises 1 - 10, find $$\dfrac{dy}{dx}$$ for the given functions.

1) $$y=x^2−\sec x+1$$

$$\dfrac{dy}{dx}=2x−\sec x\tan x$$

2) $$y=3\csc x+\dfrac{5}{x}$$

3) $$y=x^2\cot x$$

$$\dfrac{dy}{dx}=2x\cot x−x^2\csc^2 x$$

4) $$y=x−x^3\sin x$$

5) $$y=\dfrac{\sec x}{x}$$

$$\dfrac{dy}{dx}=\dfrac{x\sec x\tan x−\sec x}{x^2}$$

6) $$y=\sin x\tan x$$

7) $$y=(x+\cos x)(1−\sin x)$$

$$\dfrac{dy}{dx}=(1−\sin x)(1−\sin x)−\cos x(x+\cos x)$$

8) $$y=\dfrac{\tan x}{1−\sec x}$$

9) $$y=\dfrac{1−\cot x}{1+\cot x}$$

$$\dfrac{dy}{dx}=\dfrac{2\csc^2 x}{(1+\cot x)^2}$$

10) $$y=(\cos x)(1+\csc x)$$

In exercises 11 - 16, find the equation of the tangent line to each of the given functions at the indicated values of $$x$$. Then use a calculator to graph both the function and the tangent line to ensure the equation for the tangent line is correct.

11) [T] $$f(x)=−\sin x,\quad x=0$$

$$y=−x$$

12) [T] $$f(x)=\csc x,\quad x=\frac{π}{2}$$

13) [T] $$f(x)=1+\cos x,\quad x=\frac{3π}{2}$$

$$y=x+\frac{2−3π}{2}$$

14) [T] $$f(x)=\sec x,\quad x=\frac{π}{4}$$

15) [T] $$f(x)=x^2−\tan x, \quad x=0$$

$$y=−x$$

16) [T] $$f(x)=5\cot x, \quad x=\frac{π}{4}$$

In exercises 17 - 22, find $$\dfrac{d^2y}{dx^2}$$ for the given functions.

17) $$y=x\sin x−\cos x$$

$$\dfrac{d^2y}{dx^2} = 3\cos x−x\sin x$$

18) $$y=\sin x\cos x$$

19) $$y=x−\frac{1}{2}\sin x$$

$$\dfrac{d^2y}{dx^2} = \frac{1}{2}\sin x$$

20) $$y=\dfrac{1}{x}+\tan x$$

21) $$y=2\csc x$$

$$\dfrac{d^2y}{dx^2} = 2\csc(x)\left(\csc^2(x)+\cot^2(x)\right)$$

22) $$y=\sec^2 x$$

23) Find all $$x$$ values on the graph of $$f(x)=−3\sin x\cos x$$ where the tangent line is horizontal.

$$x = \dfrac{(2n+1)π}{4}$$,where $$n$$ is an integer

24) Find all $$x$$ values on the graph of $$f(x)=x−2\cos x$$ for $$0<x<2π$$ where the tangent line has slope 2.

25) Let $$f(x)=\cot x.$$ Determine the points on the graph of $$f$$ for $$0<x<2π$$ where the tangent line(s) is (are) parallel to the line $$y=−2x$$.

$$\left(\frac{π}{4},1\right),\quad \left(\frac{3π}{4},−1\right),\quad\left(\frac{5π}{4},1\right),\quad \left(\frac{7π}{4},−1\right)$$

26) [T] A mass on a spring bounces up and down in simple harmonic motion, modeled by the function $$s(t)=−6\cos t$$ where s is measured in inches and $$t$$ is measured in seconds. Find the rate at which the spring is oscillating at $$t=5$$ s.

27) Let the position of a swinging pendulum in simple harmonic motion be given by $$s(t)=a\cos t+b\sin t$$. Find the constants $$a$$ and $$b$$ such that when the velocity is 3 cm/s, $$s=0$$ and $$t=0$$.

$$a=0,\quad b=3$$

28) After a diver jumps off a diving board, the edge of the board oscillates with position given by $$s(t)=−5\cos t$$ cm at $$t$$ seconds after the jump.

a. Sketch one period of the position function for $$t≥0$$.

b. Find the velocity function.

c. Sketch one period of the velocity function for $$t≥0$$.

d. Determine the times when the velocity is $$0$$ over one period.

e. Find the acceleration function.

f. Sketch one period of the acceleration function for $$t≥0$$.

29) The number of hamburgers sold at a fast-food restaurant in Pasadena, California, is given by $$y=10+5\sin x$$ where $$y$$ is the number of hamburgers sold and $$x$$ represents the number of hours after the restaurant opened at 11 a.m. until 11 p.m., when the store closes. Find $$y'$$ and determine the intervals where the number of burgers being sold is increasing.

$$y′=5\cos(x)$$, increasing on $$\left(0,\frac{π}{2}\right),\;\left(\frac{3π}{2},\frac{5π}{2}\right)$$, and $$\left(\frac{7π}{2},12\right)$$

30) [T] The amount of rainfall per month in Phoenix, Arizona, can be approximated by $$y(t)=0.5+0.3\cos t$$, where $$t$$ is months since January. Find $$y′$$and use a calculator to determine the intervals where the amount of rain falling is decreasing.

For exercises 31 - 33, use the quotient rule to derive the given equations.

31) $$\dfrac{d}{dx}(\cot x)=−\csc^2x$$

32) $$\dfrac{d}{dx}(\sec x)=\sec x\tan x$$

33) $$\dfrac{d}{dx}(\csc x)=−\csc x\cot x$$

34) Use the definition of derivative and the identity $$\cos(x+h)=\cos x\cos h−\sin x\sin h$$ to prove that $$\dfrac{d}{dx}(\cos x)=−\sin x$$.

For exercises 35 - 39, find the requested higher-order derivative for the given functions.

35) $$\dfrac{d^3y}{dx^3}$$ of $$y=3\cos x$$

$$\dfrac{d^3y}{dx^3} = 3\sin x$$

36) $$\dfrac{d^2y}{dx^2}$$ of $$y=3\sin x+x^2\cos x$$

37) $$\dfrac{d^4y}{dx^4}$$ of $$y=5\cos x$$

$$\dfrac{d^4y}{dx^4} = 5\cos x$$

38) $$\dfrac{d^2y}{dx^2}$$ of $$y=\sec x+\cot x$$

39) $$\dfrac{d^3y}{dx^3}$$ of $$y=x^{10}−\sec x$$

$$\dfrac{d^3y}{dx^3} = 720x^7−5\tan(x)\sec^3(x)−\tan^3(x)\sec(x)$$

3.6E: Exercises for Section 3.5 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.