Skip to main content
Statistics LibreTexts

2.2: Solving and Graphing Inequalities, and Writing Answers in Interval Notation

  • Page ID
    35205
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Interval Notation

    Definition: How to write inequalities in Interval Notation
    • Symbol to not include a value are ( or ).
    • Symbol to include a value are [ or ].
    • Use the Symbol ( or ) when using infinity (-∞, ∞).

    1. x < -4           The region is from negative infinity (-∞) up to and not including -4.  Therefore, the Interval Notation is (-∞, -4).
    2. < -4            The region is from negative infinity (-∞) up to and including -4.  There for , the Interval Notation is (-∞, -4].
    3. -3 < x < 2     The region is from -3 up to and not including 2.  Therefore, the Interval Notation is (-3, 2).
    4. -3 < x < 2     The region is including -3 and up to and including 2.  Therefore, the Interval Notation is [-3, 2].
    5. x > 5              The region is greater than and not including 5.  Therefore, the Interval Notation is (5, ∞).
    6. x > 5              The region is greater than and including 5.  Therefore, the Interval Notation is [5, ∞).
    7. -3 < x < 10   The region is greater than and not including 3 but less than or equal to 10.  Therefore, the Interval Notation is (-3, 10].
    8. < x < 7       The region is greater than and including 4 and less than not including 7.  Therefore, the Interval Notation is [4, 7).

    To solve and graph inequalities:

    1. Solve the inequality using the Properties of Inequalities from the previous section.
    2. Graph the solution set on a number line.
    3. Write the solution set in interval notation.
    Example 2.2.1

    Solve the inequality, graph the solution set on a number line and show the solution set in interval notation:

    1. \(−1 ≤ 2x − 5 < 7\)
    2. \(x^2 + 7x + 10 < 0\)
    3. \(−6 < x − 2 < 4\)
    Solution
    1. \(\begin{array} &&−1 ≤ 2x − 5 < 7 &\text{Example problem} \\ &−1 + 5 ≤ 2x − 5 + 5 < 7 + 5 &\text{The goal is to isolate the variable \(x\), so start by adding \(5\) to all three regions in the inequality.} \\ &4 ≤ 2x < 12 &\text{Simplify.} \\ &\dfrac{4}{2} ≤ 2x < \dfrac{4}{2} &\text{Divide all by \(2\) to isolate the variable \(x\).} \\ &2 ≤ x < 6 &\text{Final answer written in inequality/solution set form.} \\ &[2, 6) &\text{Final answer written in interval notation (see section on Interval Notation for more details)} \end{array} \)

    clipboard_efc0262004238b3445893f014c353f830.png

    1. \(\begin{array} &&x^2 + 7x + 10 < 0 &\text{Example problem} \\ &(x + 5)(x + 2) < 0 &\text{Factor the polynomial.} \\ &(x + 5)(x + 2) < 0 &\text{Set each factor equal to 0 and solve for x.  x = -5 and x = -2.} \\ \end{array}\)

    \(\begin{array} &\text{Since the inequality is a strict inequality(< or >), -5 and -2 is not included in the solution set.} \end{array}\)

    \(\begin{array} &\text{Pick a point less than -5, x = -6.  Evaluate the expression (-6+5)(-6+2) = (-1)(-4) = 4.  It is positive, x < -5 is not in the solution set.} \end{array}\)

    \(\begin{array} &\text{Pick a point between -5 and x = -2.  Evaluate the expression (-4 + 5)(-4+2) = (1)(-2) = -2.  It is negative, -5 < x < -2 is in the solution set.} \end{array}\) 

    \(\begin{array} &\text{Finally, pick a point greater than -2, x = 0.  Evaluate the expression (0 + 5)(0 + 2) = 5(2) = 10.  It is positive, x > -2 is not the solution set.} \end{array}\)

    \(\begin{array} &\text{Interval notation: (-5, -2) } \end{array}\)

    clipboard_e4200ac00800a4026b88723a82132bbd6.png
    -5 < x < -2

    1. \(\begin{array}&&−6 < x − 2 ≤ 4 &\text{Example problem} \\ &−6 + 2 < x − 2 + 2 ≤ 4 + 2 &\text{The goal is to isolate the variable \(x\), so start by adding \(2\) to all three regions in the inequality.} \\ &−4 < x ≤ 6 &\text{Final answer written in inequality/solution set form.} \\ &(−4, 6] &\text{Final answer written in interval notation (see section on Interval Notation for more details).} \end{array}\)

    clipboard_e61db0750eee74347f74804dbd4b7221a.png

    Exercise 2.2.1

    Solve the inequalities, graph the solution sets on a number line and show the solution sets in interval notation:

    1. \(0 ≤ x + 1 ≤ 4\)
    2. \(0 < 2(x − 1) ≤ 4\)
    3. \(6 < 2(x − 1) < 12\)
    4. \(x^2 − 6x − 16 < 0\)
    5. \(2x^2 − x − 15 > 0\)