Skip to main content
Library homepage
 
Loading table of contents menu...
Statistics LibreTexts

6.5: Chapter Formula Review

  • Page ID
    14664
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Introduction

    \(X \sim N(\mu, \sigma)\)

    \(\mu =\) the mean; \(\sigma =\) the standard deviation

    The Standard Normal Distribution

    \(Z \sim N(0, 1)\)

    \(z = a\) standardized value (z-score)

    mean = 0; standard deviation = 1

    To find the \(k^{\text{th}}\) percentile of \(X\) when the z-scores is known:
    \(k = \mu + (z)\sigma\)

    z-score: \(z=\frac{x-\mu}{\sigma}\) or \(z=\frac{|x-\mu|}{\sigma}\)

    \(Z =\) the random variable for z-scores

    \(Z \sim N(0, 1)\)

    Estimating the Binomial with the Normal Distribution

    Normal Distribution: \(X \sim N(\mu, \sigma)\) where \(\mu\) is the mean and \(\sigma\) is the standard deviation.

    Standard Normal Distribution: \(Z \sim N(0, 1)\).


    6.5: Chapter Formula Review is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?