# Ch 6.1 Standard Normal Distribution

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### Ch 6.1 Standard Normal distribution

#### Normal Density Curve

A random variable X has a distribution with a graph that is symmetric and bell-shaped, and it can be described by the equation given by

$$y = \frac{e^{\frac{-1}{2}\cdot {(\frac{x-\mu}{\sigma})}^2}}{\sigma \sqrt{2 \pi}}$$ , then it has a “Normal distribution”

Normal Density Curve:

Note: the distribution is determined by μ  and  σ.

#### Z-score

Z-score of x =  $$\frac{x-\mu}{\sigma}$$ is the standardized value of x.

z-score tells the number of standard deviation X is above or below the mean. Positive z implies X is above the mean, negative z implies X is below the mean.

#### A) Standard Normal

(also known as z distribution) is a normal distribution with parameters:

Mean μ = 0 and standard deviation σ = 1.

The total area under its density curve is equal to 1.

Properties of standard normal (z-normal):

- area left of z of 0 = 0.5

- area right of z of 0 = 0.5

- area left of z =  area right of  - z

- area right of z = 1 – area left of z

#### B) Empirical Rule (68-95-99.7)

If X is normally distributed, 68% are within 1 sd from the mean. 95% are within 2 sd from the mean, 99.7% are within 3 sd from the mean.

P( Z-score between -1 and 1 ) = 68%

P( Z-score between -2 and 2 ) = 95%

P( Z-score between -3 and 3 ) = 99.7%

Ex1.  Weight of a certain type of dog is normally distributed with mean = 18 lb. and standard deviation of 2 lb.

write the marking of mean, mean - 1sd, mean - 2sd, mean + sd, mean + 2d on a number line.

a) What is the z-score of 14lb and 22 lb? What is the probability that a dog weighs between 14 lb and 22lb?

14 and 22 are 2 sd from the mean, so according to the Empirical rule, the probability is 95%.

b) What is the z-score of 20lb and 16lb? What is the probability that a dog weighs between 16lb and 20 lb?

16 and 20 are 1 sd from the mean, so according to the Empirical rule, the probability is 68%.

c) What is the z-score of 24 lb and 12 lb? What is the probability that a dog weigh between 12 lb and 24lb?

24 is 3 sd above the mean, so z-score of 24 lb is 3.

12 is 3 sd below the mean, so z-score of 12 lb is -3.

#### C) Probability of z-score in standard normal

Use online Normal distribution calculator

http://onlinestatbook.com/2/calculators/normal_dist.html

Specify mean μ =0  standard deviation &sigma&

-For left area or P(x < a) click below

-For right area or P(x > a) click above

-For area between two values a and b P( a < x < b), click between

-For area outside of a and b, P(x < a or x > b), click outside

-Click “Recalculate”

Ex1: Find probability that z is between -1.8  and 1.8. Sketch the area.

Use online Normal calculator Mean = 0, SD = 1

Click between, enter -1.8, 1.8

Recalculate: P( -1.8 < z < 1.8 ) = 0.9281

Ex2. Find the probability that z is less than 0.44. Sketch the area.

Use online Normal calculator μ =0 , SD=1

Click below , enter 0.44

Recalculate: P( z < 0.44 ) = 0.67

Ex3. Find the probability that z is greater than 1.8.  Sketch the area.

Use online Normal calculator μ =0 , SD=1

Click above , enter 1.8

Recalculate: P( z >1.8) = 0.0359

Ex 4. Find the probability that z is less than – 1.2. Sketch the area.

Use online Normal calculator μ =0 , SD=1

Click below , enter -1.2

Recalculate: P( z < -1.2) = 0.1151

### D) Find percentile of a z-score

k Percentile corresponds to a value that is higher thank% of all values. Or k% of data are less than the k percentile value. This corresponds to left area of k%.

Ex5. What percentile is the z-score 2.2?

Use online Normal calculator Mean =0 , SD=1

Percentile is referring to 2.2 or less. Click below , enter 2.2

Recalculate: P( z < 2.2) = 0.9861 = 98.6%

Round to whole percent = 99th percentile

Ex 6. What percentile is the z-score -1.35

Use online Normal calculator μ =0 , σ=1

Click below , enter -1.35

Recalculate: P( z < -1.35) = 0.0885 = 8.9%

Round to whole percent. 9th percentile

### E) Find z-score given area or percentile.

Online Inverse Normal calculator is use to find the z-score that is the cut-off for the left area, right area or percentile.

http://onlinestatbook.com/2/calculators/inverse_normal_dist.html

Specify area, mean= 0 and SD= 1

Select if area is below, above, between or outside.

Click “Recalculate”

Ex1. Find the z-score that corresponds to bottom 10% of all values.

Use Inverse Normal Calculator. Convert 10% to  0.1.

Specify area = 0.1, Mean = 0, sd =1,

Click below.

Recalculate.   P( z < __-1.28_____ ) = 0.1,   cut-off z = -1.28

Ex2.  Find the cutoff for top 20%.

Use Inverse Normal Calculator. Convert 20% to  0.2.

Specify area = 0.2

Mean = 0, sd =1,

Click above  ( for top percent). Recalculate.

P( z >  __0.842______) = 0.2  z-cutoff = 0.84

Ex3. Find P91 , 91th percentile of all z.

Use Inverse Normal calculator.

Specify area = 0.91

Mean = 0, sd =1,

Click below. Recalculate.

P( z <  __1.341______) = 0.91  91th percentile of all z = 1.34.

Ex4. Find P15, 15th percentile of all z.

Convert 15% = 0.15. Use Inverse Normal calculator.

Specify area = 0.15, Mean = 0, sd =1,

Click below. Recalculate

P( z <  _-1.036_______) = 0.15  15th percentile = -1.04

### F) Find Critical value Zα

α = significant level. The probability of unlikely, default is 0.05 if not specify.

Critical value zα : the positive z-value that separates significantly high values of  z with non-significant z.

Note: Significantly low critical value = - zα

To find zα:  Use Inverse Normal calculator

Specify area = α, Mean = 0, sd =1,

Click above. Recalculate.

Ex1. Given α = 0.02, Find the critical value Z0.02.

Use Inverse Normal calculator

Specify area = 0.02, Mean = 0, sd =1,

Click above. Recalculate.

Z0.02 = 2.054

Ex2. Given α = 0.06, find the critical value Z0.06

Use Inverse Normal calculator

Specify area = 0.06, Mean = 0, sd =1,

Click above. Recalculate.

Z0.06 = 1.555

Ch 6.1 Standard Normal Distribution is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.