17.6: Appendix F to Applied Probability- Properties of conditional expectation, given a random vector
- Page ID
- 12033
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We suppose, without repeated assertion, that the random variables and functions of random vectors are integrable, as needed.
(CE1): Defining condition. \(e(X) = E[g(Y)|X]\) a.s. iff \(E[I_M (X) g(Y)] = E[I_M (X) e(X)]\) for each Borel set \(M\) on the codomain of \(X\).
(CE1a): If \(P(X \in M) > 0\), then \(E[I_M(X) e(X)] = E[g(Y)|X \in M] P(X \in M)\)
(CE1b): Law of total probability. \(E[g(Y)] = E\{[g(Y)|X]\}\)
(CE2): Linearity. For any constants \(a, b\)
\(E[ag(Y) + bh(Z)|X] = aE[g(Y)|X] + bE[h(Z)|X]\) a.s.
(Extends to any finite linear combination)
(CE3): positivity; monotonicty.
a. \(g(Y) \ge 0\) a.s. implies \(E[g(Y)|X] \ge 0\) a.s.
b. \(g(Y) \ge h(Z)\) a.s. implies \(E[g(Y)|X] \ge E[h(Z)|X]\) a.s.
(CE4): Monotone convergence. \(Y_n \to Y\) a.s. monotonically implies \(E[Y_n |X] \to E[Y|X]\) a.s.
(CE5): Independence. \(\{X, Y\}\) is an independent pair
a. iff \(E[g(Y)|X] = E[g(Y)]\) a.s. for all Borel functions \(g\)
b. iff \(E[I_N (Y)|X] = E[I_N (Y)]\) a.s. for all Borel sets \(N\) on the codomain of \(Y\)
(CE6): \(e(X) = E[g(Y)|X]\) a.s. iff \(E[h(X)g(Y)] = E[h(X)e(X)]\) a.s. for any Borel function \(h\)
(CE7): \(E[h(X)|X] = h(X)\) a.s. for any Borel function \(h\)
(CE8): \(E[h(X)g(Y)|X] = h(X) E[g(Y)|X]\) a.s. for any Borel function \(h\)
(CE9): If \(X = h(W)\) and \(W = k(X)\), with \(h, k\) Borel functions, then \(E[g(Y)|X] = E[g(Y)|W]\) a.s.
(CE10): If \(g\)is a Borel function such that \(E[g(t, Y)]\) is finite for all \(t\) on the range of \(X\) and \(E[g(X, Y)]\) is finite, then
a. \(E[g(X, Y)|X = t] = E[g(t, Y)|X = t]\) a.s. \([P_X]\)
b. If \(\{X, Y\}\) is independent, then \(E[g(X, Y)|X = t] = E[g(t, Y)]\) a.s. \([P_X]\)
(CE11): Suppose \(\{X(t): t \in T\}\) is a real-valued measurable random process whose parameter set \(T\) is a Borel subset of the real line and \(S\) is a random variable whose range is a subset of \(T\), so that \(X(S)\) is a random variable.
If \(E[X(t)]\) is finite for all \(t\) in \(T\) and \(E[X(S)]\) is finite, then
a. \9E[X(S)|S = t] = E[X(t)|S = t]\) a.s \([P_S]\)
b. If, in addition, \(\{S, X_T\}\) is independent, then \(E[X(S)|S = t] = E[X(t)]\) a.s. \([P_S]\)
(CE12): Countable additivity and countable sums.
a. If \(Y\) is integrable on \(A\) and \(A = \bigvee_{n = 1}^{\infty} A_n\).
then \(E[I_A Y|X] = \sum_{n = 1}^{\infty} E[I_A Y|X]\) a.s.
b. If \(\sum_{n = 1}^{\infty} E[|Y_n|] < \infty\), thne \(E[\sum_{n = 1}^{\infty} Y_n|X]\) a.s.
(CE13): Triangle inequality. \(|E[g(Y)|X]| \le E[|g(Y)||X]\) a.s.
(CE14): Jensen's inequality. If \(g\) is a convex function on an interval \(I\) which contains the range of a real random variable \(Y\), then \(g\{E[Y|X]\} \le E[g(Y)|X]\) a.s.
(CE15): Suppose \(E[|Y|^p] < \infty\) and \(E[|Z|^p] < \infty\) for \(1 \le p < \infty\). Then \(E\{|E[Y|X] - E[Z|X]|^p\} \le E[|Y - Z|^p] < \infty\)