Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Two-Factor ANOVA model with n = 1 (no replication)

( \newcommand{\kernel}{\mathrm{null}\,}\)

1. Two-factor ANOVA model with n = 1 (no replication)

  • For some studies, there is only one replicate per treatment, i.e., n = 1.
  • ANOVA model for two-factor studies need to be modified, since
    - the degrees of freedom associated with SSE will be (n1)ab=0;
    - thus the error variance σ2 can not be estimated by SSE anymore.
  • Idea: make the model simpler by assuming the two factors do not interact with each other. Validity of this assumption needs to be checked.

1.1 Two-factor model without interaction

With n = 1.

  • Model equation:

Yij=μ..+αi+βj+ϵij,i=1,...,a,j=1,...,b.

  • Identifiability constraints:

ai=1αi=0,bj=1βj=0.

  • Distributional assumptions: ϵij are i.i.d. N(0,σ2)

Sum of squares

Interaction sum of squares now plays the role of error sum of squares.

SSAB=nai=1bj=1(¯Yij.¯Yi..¯Y.j.+¯Y...)2=ai=1bj=1(¯Yij¯Yi.¯Y.j+¯Y..)2

MSAB=SSAB(a1)(b1) since d.f.(SSAB)=(a1)(b1).

  • In the general two-factor ANOVA model (when n = 1),

E(MSAB)=σ2+ai=1bj=1(αβ)2ij(a1)(b1)

  • Under the model without interaction: E(MSAB)=σ2
  • Thus MSAB can be used to estimate σ2.

ANOVA Table

ANOVA table for two-factor model without interaction and n=1

Source of Variation SS df MS
Factor A SSA=bi(¯Yi.¯Y..)2 a1 MSA
Factor B SSB=aj(¯Y.j¯Y..)2 b1 MSB
Error SSAB=ai=1bj=1(¯Yij¯Yi.¯Y.j+¯Y..)2 (a1)(b1) MSAB
Total SSTO=ai=1bj=1(¯Yij¯Y..)2 ab1

Expected mean squares (under no interaction):

E(MSA)=σ2+bai=1α2ia1,E(MSB)=σ2+abj=1β2jb1,E(MSAB)=σ2

F tests (for main effects)

Test factor A main effects: Ho:α1=...=αa=0 vs. Ha: not all αi's are equal to zero.

  • FA=MSAMSAB Fa1,(a1)(b1) under Ho.
  • Reject Ho at level of significance α if observed FA>F(1α;a1,(a1)(b1)).

Test factor B main effects: Ho:β1=...=βb=0 vs. Ha: not all βj's are equal to zero.

  • FB=MSBMSAB Fb1,(a1)(b1) under Ho.
  • Reject Ho at level of significance α if observed FB>F(1α;b1,(a1)(b1)).

Estimation of means

Estimation of factor level means μi.'s , μ.j's.

  • Proceed as before, viz., use the unbiased estimator ¯Yi. for μi. and ¯Y.j for μ.j, but replace MSE by MSAB and use the degrees of freedom of MSAB, that is (a1)(b1). Thus, estimated standard errors:

s(¯Yi.)=MSABb,s(¯Y.j)=MSABa.

Estimation of treatment means μij's.

  • μij=E(Yij)=μ..+αi+βj=μi.+μ.jμ..
    Thus, an unbiased estimator: ˆμij=¯Yi.+¯Y.j¯Y..
    Estimated standard error:

s(ˆμij)=MSAB(1b+1a1ab)=MSAB(a+b1ab)

1.2 Example: Insurance

An analyst studied the premium for auto insurance charged by an insurance company in six cities. The six cities were selected to represent different sizes (Factor A: small, medium, large) and differentregions of the state (Factor B: east, west). There is only one city for each combination of size and region. The amounts of premiums charged for a specific type of coverage in a given risk category for each of the six cities are given in the following table.

Table 1: Numbers in parentheses are ˆμij=¯Yi.+¯Y.j¯Y..

Factor B
East West
Factor A Small 140(135)
Medium 210(210)
Large 220(225)
100(105)
180(180)
200(195)
¯Y1.=120
¯Y2.=195
¯Y3.=210
¯Y.1=190 ¯Y.2=160 ¯Y..=175

Interaction plot based on the treatment sample means Yij's: no strong interactions.

Sum of squares:

  • Here a=3, b=2, n=1.
  • SSA=2[(120175)2+(195175)2+(210175)2]=9300..
  • SSB=3[(190175)2+(160175)2]=1350.
  • SSAB=(140120190+175)2+...+(200210160+175)2=100.
  • SSTO=SSA+SSB+SSAB=10750.
    Hypothesis testing:
  • Test Ho:μ1.=μ2.=μ3. (equivalently, Ho:α1=α2=α3=0) at level 0.05.
    Table 2: ANOVA Table for Insurance example
    Source of Variation SS df MS
    Factor A SSA=9300 a1=2 MSA=4650
    Factor B SSB=1350 b1=1 MSB=1350
    Error SSAB=100 (a1)(b1)=2 MSAB=50
    Total SSTO=10750 ab1=5

FA=MSAMSAB=465050=93 and F(0.95;2,2)=19. Thus reject Ho at level 0.05.

  • Estimation of μij: e.g.,
    ˆμ11=¯Y1.+¯Y.1¯Y..=120+190175=135.
  • Estimation of μi. and μ.j: e.g.,
    ˆμ1.=¯Y1.=120.
    s(¯Y1.)=MSABb=502=5.
    The 95% C.I. for μ1. is:
    ¯Y1.±t(0.975;2)s(¯Y1.)=120±4.35=(98.5,141.5).

1.3 Checking for the presence of interaction: Tukey's test for additivity

For a two-factor study with n=1, decide whether or not the two factors are interacting.

  • In the no-interaction model, we assume that all (αβ)ij=0.
  • Idea: use a less severe restriction on the interaction effects, by assuming
    (αβ)ij=Dαiβj,i=1,...,a,j=1,...,b,
    where D is an unknown parameter.
  • The model becomes:
    Yij=μ..+αi+βj+Dαiβj+ϵij,i=1,...,a,j=1,...,b,
    under the constraints that
    ai=1αi=bj=1βj=0.

Estimation of D

  • Multiply αiβj on both sides of the equation:
    αiβjYij=μ..αiβj+α2iβj+αiβ2j+Dα2iβ2j+ϵijαiβj
  • Sum over all pairs (i, j):
    ai=1bj=1αiβjYij=Dai=1bj=1α2iβ2j+ai=1bj=1ϵijαiβj
  • Then
    ˜D:=ai=1bj=1αiβjYij(ai=1α2i)(bj=1β2j)D
  • We have the following estimates:
    ˆαi=¯Yi.¯Y..,ˆβj=¯Y.j¯Y..
  • Thus, an estimator of D (which is also the least squares and the maximum likelihood estimator) is given by
    ˆD=ai=1bj=1(¯Yi.¯Y..)(¯Y.j¯Y..)Yij(ai=1(¯Yi.¯Y..)2)(bj=1(¯Y.j¯Y..)2).

ANOVA decomposition

SSTO=SSA+SSB+SSAB+SSRem.

  • Interaction sum of squares
    SSAB=ai=1bj=1ˆD2ˆα2iˆβ2j=(ai=1bj=1(¯Yi.¯Y..)(¯Y.j¯Y..)Yij)2(ai=1(¯Yi.¯Y..)2)(bj=1(¯Y.j¯Y..)2)
  • Remainder sum of squares
    SSREM=SSTOSSASSBSSAB
  • Decomposition of degrees of freedom
    df(SSTO)=df(SSA)+df(SSB)+df(SSAB)+df(SSRem)
    ab1=(a1)+(b1)+1+(abab)
  • Tukey's one degree of freedom test for additivity: Ho:D=0 (i.e., no interaction) vs. Ha:D0.
  • F ratio FTukey=SSAB/1SSRem/(abab)F1,abab under Ho.
  • Decision rule: reject Ho:D=0 at level of significance α if FTukey>F(1α;1,abab).

Example: Insurance

  • ij(¯Yi.¯Y..)(¯Y.j¯Y..)Yij=13500.
  • ai=1(¯Yi.¯Y..)2=4650, and bj=1(¯Y.j¯Y..)2=450.
  • SSAB=(13500)24650450=87.1.
  • SSRem=107509300135087.1=12.9.
  • abab=3232=1.
  • F-ratio for Tukey's test:
    FTukey=SSAB/1SSRem/1=87.112.9=6.8.
  • When α=0.05,F(0.95;1,1)=161.4>6.8.
  • Thus, we can not reject Ho:D=0 at the 0.05 level, and we conclude that there is no significant interaction between the two factors.
  • Indeed, the p-value is p=P(F1,1>6.8)=0.23 which is not at all significant.

Contributors

  • Scott Brunstein (UCD)
  • Debashis Paul (UCD)

This page titled Two-Factor ANOVA model with n = 1 (no replication) is shared under a not declared license and was authored, remixed, and/or curated by Debashis Paul.

Support Center

How can we help?