Skip to main content
Statistics LibreTexts

A.2: Table of Z of standard normal probabilities

  • Page ID
    45296
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    A normal probability distribution curve, with upper tail highlighted.
    Figure \(\PageIndex{1}\).
    Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
    0.0 0.500000 0.496011 0.492022 0.488034 0.484047 0.480061 0.476078 0.472097 0.468119 0.464144
    0.1 0.460172 0.456205 0.452242 0.448283 0.444330 0.440382 0.436441 0.432505 0.428576 0.424655
    0.2 0.420740 0.416834 0.412936 0.409046 0.405165 0.401294 0.397432 0.393580 0.389739 0.385908
    0.3 0.382089 0.378281 0.374484 0.370700 0.366928 0.363169 0.359424 0.355691 0.351973 0.348268
    0.4 0.344578 0.340903 0.337243 0.333598 0.329969 0.326355 0.322758 0.319178 0.315614 0.312067
    0.5 0.308538 0.305026 0.301532 0.298056 0.294599 0.291160 0.287740 0.284339 0.280957 0.277595
    0.6 0.274253 0.270931 0.267629 0.264347 0.261086 0.257846 0.254627 0.251429 0.248252 0.245097
    0.7 0.241964 0.238852 0.235763 0.232695 0.229650 0.226627 0.223627 0.220650 0.217695 0.214764
    0.8 0.211855 0.208970 0.206108 0.203269 0.200454 0.197663 0.194895 0.192150 0.189430 0.186733
    0.9 0.184060 0.181411 0.178786 0.176186 0.173609 0.171056 0.168528 0.166023 0.163543 0.161087
    1.0 0.158655 0.156248 0.153864 0.151505 0.149170 0.146859 0.144572 0.142310 0.140071 0.137857
    1.1 0.135666 0.133500 0.131357 0.129238 0.127143 0.125072 0.123024 0.121000 0.119000 0.117023
    1.2 0.115070 0.113139 0.111232 0.109349 0.107488 0.105650 0.103835 0.102042 0.100273 0.098525
    1.3 0.096800 0.095098 0.093418 0.091759 0.090123 0.088508 0.086915 0.085343 0.083793 0.082264
    1.4 0.080757 0.079270 0.077804 0.076359 0.074934 0.073529 0.072145 0.070781 0.069437 0.068112
    1.5 0.066807 0.065522 0.064255 0.063008 0.061780 0.060571 0.059380 0.058208 0.057053 0.055917
    1.6 0.054799 0.053699 0.052616 0.051551 0.050503 0.049471 0.048457 0.047460 0.046479 0.045514
    1.7 0.044565 0.043633 0.042716 0.041815 0.040930 0.040059 0.039204 0.038364 0.037538 0.036727
    1.8 0.035930 0.035148 0.034380 0.033625 0.032884 0.032157 0.031443 0.030742 0.030054 0.029379
    1.9 0.028717 0.028067 0.027429 0.026803 0.026190 0.025588 0.024998 0.024419 0.023852 0.023295
    2.0 0.022750 0.022216 0.021692 0.021178 0.020675 0.020182 0.019699 0.019226 0.018763 0.018309
    2.1 0.017864 0.017429 0.017003 0.016586 0.016177 0.015778 0.015386 0.015003 0.014629 0.014262
    2.2 0.013903 0.013553 0.013209 0.012874 0.012545 0.012224 0.011911 0.011604 0.011304 0.011011
    2.3 0.010724 0.010444 0.010170 0.009903 0.009642 0.009387 0.009137 0.008894 0.008656 0.008424
    2.4 0.008198 0.007976 0.007760 0.007549 0.007344 0.007143 0.006947 0.006756 0.006569 0.006387
    2.5 0.006210 0.006037 0.005868 0.005703 0.005543 0.005386 0.005234 0.005085 0.004940 0.004799
    2.6 0.004661 0.004527 0.004396 0.004269 0.004145 0.004025 0.003907 0.003793 0.003681 0.003573
    2.7 0.003467 0.003364 0.003264 0.003167 0.003072 0.002980 0.002890 0.002803 0.002718 0.002635
    2.8 0.002555 0.002477 0.002401 0.002327 0.002256 0.002186 0.002118 0.002052 0.001988 0.001926
    2.9 0.001866 0.001807 0.001750 0.001695 0.001641 0.001589 0.001538 0.001489 0.001441 0.001395
    3.0 0.001350 0.001306 0.001264 0.001223 0.001183 0.001144 0.001107 0.001070 0.001035 0.001001
    3.1 0.000968 0.000935 0.000904 0.000874 0.000845 0.000816 0.000789 0.000762 0.000736 0.000711
    3.2 0.000687 0.000664 0.000641 0.000619 0.000598 0.000577 0.000557 0.000538 0.000519 0.000501
    3.3 0.000483 0.000466 0.000450 0.000434 0.000419 0.000404 0.000390 0.000376 0.000362 0.000349
    3.4 0.000337 0.000325 0.000313 0.000302 0.000291 0.000280 0.000270 0.000260 0.000251 0.000242
    3.5 0.000233 0.000224 0.000216 0.000208 0.000200 0.000193 0.000185 0.000178 0.000172 0.000165
    3.6 0.000159 0.000153 0.000147 0.000142 0.000136 0.000131 0.000126 0.000121 0.000117 0.000112
    3.7 0.000108 0.000104 0.000100 0.000096 0.000092 0.000088 0.000085 0.000082 0.000078 0.000075
    3.8 0.000072 0.000069 0.000067 0.000064 0.000062 0.000059 0.000057 0.000054 0.000052 0.000050
    3.9 0.000048 0.000046 0.000044 0.000042 0.000041 0.000039 0.000037 0.000036 0.000034 0.000033
    4.0 0.000032 0.000030 0.000029 0.000028 0.000027 0.000026 0.000025 0.000024 0.000023 0.000022

    where standard refers to mean \(\mu = 0\) and standard deviation \(\sigma = 1\)

    \[Z = \frac{X_{i} - \mu}{\sigma} \nonumber\]

    R command

    Z <- seq(-4,4, by=.1)
    pnorm(c(Z), mean=0, sd=1, lower.tail=FALSE)

    This page titled A.2: Table of Z of standard normal probabilities is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael R Dohm via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?