13.12: Practice
- Page ID
- 46059
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)13. The Correlation Coefficient r
- one group of subjects, some of whom possess characteristics of trait A, the remainder possessing those of trait B
- measures of trait A on one group of subjects and of trait B on another group
- two groups of subjects, one which could be classified as A or not A, the other as B or not B
- two groups of subjects, one which could be classified as A or not A, the other as B or not B
- 81% of the variation in the money spent for repairs is explained by the age of the auto
- 81% of money spent for repairs is unexplained by the age of the auto
- 90% of the money spent for repairs is explained by the age of the auto
- none of the above
- 20
- 16
- 40
- 80
- plus and minus 10% from the means includes about 68% of the cases
- one-tenth of the variance of one variable is shared with the other variable
- one-tenth of one variable is caused by the other variable
- on a scale from -1 to +1, the degree of linear relationship between the two variables is +.10
- X and Y have standard distributions
- the variances of X and Y are equal
- there exists no relationship between X and Y
- there exists no linear relationship between X and Y
- none of these
- Approximately 0.9
- Approximately 0.4
- Approximately 0.0
- Approximately -0.4
- Approximately -0.9
- height is expressed centimeters.
- weight is expressed in Kilograms.
- both of the above will affect r.
- neither of the above changes will affect r.
13.3 Testing the Significance of the Correlation Coefficient
- anxiety causes neuroticism
- those who score low on one test tend to score high on the other.
- those who score low on one test tend to score low on the other.
- no prediction from one test to the other can be meaningfully made.
13.4 Linear Equations
X: Number of widgets purchased – 1, 3, 6, 10, 15
Y: Cost per widget(in dollars) – 55, 52, 46, 32, 25
Suppose the regression line is \(\hat{y}=-2.5 x+60\). We compute the average price per widget if 30 are purchased and observe which of the following?
a. \(\hat{y}=15\) dollars; obviously, we are mistaken; the prediction \(\hat{y}\) is actually +15 dollars.
b. \(\hat{y}=15\) dollars, which seems reasonable judging by the data.
c. \(\hat{y}=-15\) dollars, which is obvious nonsense. The regression line must be incorrect.
d. \(\hat{y}=-15\) dollars, which is obvious nonsense. This reminds us that predicting \(Y\) outside the range of \(X\) values in our data is a very poor practice.
13.5 The Regression Equation
Information:
- miles driven per day
- weight of car
- number of cylinders in car
- average speed
- miles per gallon
- number of passengers
- there is no relationship between Y and X in the sample
- there is no relationship between Y and X in the population
- there is a perfect negative relationship between Y and X in the population
- there is a perfect negative relationship between Y and X in the sample.
- negative.
- low.
- heterogeneous.
- between two measures that are unreliable.
13.6 Interpretation of Regression Coefficients: Elasticity and Logarithmic Transformation
X | Y |
4 | 8 |
2 | 4 |
8 | 18 |
6 | 22 |
10 | 30 |
6 | 8 |
Regression equation: y^i=−3.6+3.1⋅Xiπ¦^π=−3.6+3.1⋅ππ
What is your estimate of the average height of all trees having a trunk diameter of 7 inches?
Suppose that a test has been conducted and results from a computer include:
Intercept = 60
Slope = −4
Standard error of the regression coefficient = 1.0
Degrees of Freedom for Error = 2000
95% Confidence Interval for the slope −2.04, −5.96
Is this evidence consistent with the claim that the number of fleas is reduced at a rate of 5 fleas per unit chemical?
13.7 Predicting with a Regression Equation
The fitted trend line is
\[ \hat{y}_j=80+1.5 \cdot X_j \notag\]
( \(Y_j\) : Average yield in \(j\) year after introduction)
( \(X_j: j\) year after introduction).
- What is the estimated average yield for the fourth year after introduction?
- Do you want to use this trend line to estimate yield for, say, 20 years after introduction? Why? What would your estimate be?
- most
- half
- very little
- one quarter
- none of these
- r=1.18
- r=−.77
- r=.68
13.8 How to Use Microsoft Excel® for Regression Analysis
Part of the computer output includes:
i | bi | Sbi |
0 | 8 | 1.6 |
1 | 2.2 | .24 |
2 | -.72 | .32 |
3 | 0.005 | 0.002 |
- Calculation of confidence interval for b2 consists of _______± (a student's t value) (_______)
- The confidence level for this interval is reflected in the value used for _______.
- The degrees of freedom available for estimating the variance are directly concerned with the value used for _______
Variable | Coefficient | Standard Error of biππ |
1 | 0.45 | 0.21 |
2 | 0.80 | 0.10 |
3 | 3.10 | 0.86 |
- 0.80 is an estimate of ___________.
- 0.10 is an estimate of ___________.
- Assuming the responses satisfy the normality assumption, we can be 95% confident that the value of β2 is in the interval,_______ ± [t.025 ⋅ _______], where t.025 is the critical value of the student's t-distribution with ____ degrees of freedom.