11.9: Formula Review
( \newcommand{\kernel}{\mathrm{null}\,}\)
11.2 Facts About the Chi-Square Distribution
X2=(Z1)2+(Z2)2+…(Zdf)2 chi-square distribution random variable
μX2=df chi-square distribution population mean
σχ2=√2(df) Chi-Square distribution population standard deviation
11.3 Test of a Single Variance
χ2=(n−1)s2σ20 Test of a single variance statistic where:
n: sample size
s: sample standard deviation
σ0 : hypothesized value of the population standard deviation
df=n−1 Degrees of freedom
Test of a Single Variance
- Use the test to determine variation.
- The degrees of freedom is the number of samples -1 .
- The test statistic is (n−1)s2σ20, where n= sample size, s2= sample variance, and σ2= population variance.
- The test may be left-, right-, or two-tailed.
11.4 Goodness-of-Fit Test
∑k(O−E)2E goodness-of-fit test statistic where:
O: observed values
E : expected values
k : number of different data cells or categories
df=k−1 degrees of freedom
11.5 Test of Independence
Test of Independence
- The number of degrees of freedom is equal to (number of columns - 1)(number of rows - 1).
- The test statistic is ∑i⋅j(O−E)2E where O= observed values, E= expected values, i= the number of rows in the table, and \
- (j=\) the number of columns in the table.
- If the null hypothesis is true, the expected number E= (row total)(column total) total surveyed .
11.6 Test for Homogeneity.
∑i⋅j(O−E)2E Homogeneity test statistic where: O= observed values
E= expected values
i= number of rows in data contingency table
j= number of columns in data contingency table
df=(i−1)(j−1) Degrees of freedom