Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

11.9: Formula Review

( \newcommand{\kernel}{\mathrm{null}\,}\)

11.2 Facts About the Chi-Square Distribution

X2=(Z1)2+(Z2)2+(Zdf)2 chi-square distribution random variable
μX2=df chi-square distribution population mean
σχ2=2(df) Chi-Square distribution population standard deviation

11.3 Test of a Single Variance

χ2=(n1)s2σ20 Test of a single variance statistic where:

n: sample size
s: sample standard deviation
σ0 : hypothesized value of the population standard deviation
df=n1 Degrees of freedom

Test of a Single Variance

  • Use the test to determine variation.
  • The degrees of freedom is the number of samples -1 .
  • The test statistic is (n1)s2σ20, where n= sample size, s2= sample variance, and σ2= population variance.
  • The test may be left-, right-, or two-tailed.

11.4 Goodness-of-Fit Test

k(OE)2E goodness-of-fit test statistic where:

O: observed values
E : expected values

k : number of different data cells or categories
df=k1 degrees of freedom

11.5 Test of Independence

Test of Independence

  • The number of degrees of freedom is equal to (number of columns - 1)(number of rows - 1).
  • The test statistic is ij(OE)2E where O= observed values, E= expected values, i= the number of rows in the table, and \
  • (j=\) the number of columns in the table.
  • If the null hypothesis is true, the expected number E= (row total)(column total)  total surveyed .

11.6 Test for Homogeneity.

ij(OE)2E Homogeneity test statistic where: O= observed values

E= expected values
i= number of rows in data contingency table
j= number of columns in data contingency table
df=(i1)(j1) Degrees of freedom


11.9: Formula Review is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?