Skip to main content
Statistics LibreTexts

2.12: Formula Review

  • Page ID
    45661
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    2.3 Measures of the Location of the Data

    \[
    i=\left(\frac{k}{100}\right)(n+1)
    \]

    where \(i=\) the ranking or position of a data value,
    \(k=\) the kth percentile,
    \(n=\) total number of data.

    Expression for finding the percentile of a data value: \(\left(\frac{x+0.5 y}{n}\right)(100)\) where \(x=\) the number of values counting from the bottom of the data list up to but not including the data value for which you want to find the percentile,
    \(y=\) the number of data values equal to the data value for which you want to find the percentile,
    \(n=\) total number of data

    2.4 Measures of the Center of the Data

    \(\mu=\frac{\sum f m}{\sum f}\) Where \(f=\) interval frequencies and \(m=\) interval midpoints.

    The arithmetic mean for a sample (denoted by \(\bar{x}\) ) is \(\bar{x}=\frac{\text { Sum of all values in the sample }}{\text { Number of values in the sample }}\)

    The arithmetic mean for a population (denoted by \(\mu\) ) is \(\mu=\frac{\text { Sum of all values in the population }}{\text { Number of values in the population }}\)

    2.6 Geometric Mean

    The Geometric Mean: \(\tilde{x}=\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}=\sqrt[n]{x_1 \cdot x_2 \cdots x_n}=\left(x_1 \cdot x_2 \cdots x_n\right)^{\frac{1}{n}}\)

    2.7 Skewness and the Mean, Median, and Mode

    Formula for skewness: \(a_3=\sum \frac{\left(x_i-\bar{x}\right)^3}{n s^3}\)
    Formula for Coefficient of Variation: \(C V=\frac{s}{\bar{x}} \cdot 100\) conditioned upon \(\bar{x} \neq 0\)

    2.8 Measures of the Spread of the Data

    \(s_x=\sqrt{\frac{\sum f m^2}{n}-\bar{x}^2}\) where \(\begin{array}{l}s_x=\text { sample standard deviation } \\ \bar{x}=\text { sample mean }\end{array}\)
    \(\bar{x}=\) sample mean

    Formulas for Sample Standard Deviation \(s=\sqrt{\frac{\Sigma(x-\bar{x})^2}{n-1}}\) or \(s=\sqrt{\frac{\Sigma f(x-\bar{x})^2}{n-1}}\) or \(s=\sqrt{\frac{\left(\sum_{i=1}^n x^2\right)-n \bar{x}^2}{n-1}}\) For the sample standard deviation, the denominator is \(\boldsymbol{n} \mathbf{- 1}\), that is the sample size - 1 .

    Formulas for Population Standard Deviation \(\sigma=\sqrt{\frac{\Sigma(x-\mu)^2}{N}}\) or \(\sigma=\sqrt{\frac{\Sigma f(x-\mu)^2}{N}}\) or \(\sigma=\sqrt{\frac{\sum_{i=1}^N x_i^2}{N}-\mu^2 \text { For }}\) the population standard deviation, the denominator is \(N\), the number of items in the population.


    2.12: Formula Review is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?