Skip to main content
Statistics LibreTexts

6.4: Special Case - Fully Nested Random Effects Design

  • Page ID
    33661
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Here, we will consider a special case of random effects models where each factor is nested within the levels of the next "order" of a hierarchy. This Fully Nested Random Effects model is similar to Russian Matryoshka dolls, where the smaller dolls are nested within the next larger one.

    Consider 3 random factors A, B, and C that are hierarchically nested. That is, C is nested in (B, A) combinations and B is nested within levels of A. Suppose there are \(n\) observations made at the lowest level.

    The statistical model for this case is: \[Y_{ijkl} = \mu + \alpha_{i} + \beta_{i(j)} + \gamma_{k(ij)} + \epsilon_{ijkl}\]

    where \(i = 1, 2, \ldots, a\), \(j = 1, 2, \ldots, b\), \(k = 1, 2, \ldots, c\) and \(l = 1, 2, \ldots, n\).

    We will also have \(\epsilon_{ijkl} \overset{iid}{\sim} \mathcal{N} \left(0, \sigma_{2}\right)\), \(\gamma_{k(ij)} \overset{iid}{\sim} \mathcal{N} \left(0, \sigma_{\gamma}^{2}\right)\), \(\beta_{i(j)} \overset{iid}{\sim} \mathcal{N} \left(0, \sigma_{\beta}^{2}\right)\), and \(\alpha_{i} \overset{iid}{\sim} \mathcal{N} \left(0, \sigma_{\alpha}^{2}\right)\).

    The DFs and expected mean squares for this design would be as follows:

    Source DF EMS F
    A \((a-1)\) \(\sigma_{\epsilon}^{2} + n \sigma_{\gamma}^{2} + nc \sigma_{\beta}^{2} + ncb \sigma_{\alpha}^{2}\) MSA / MSB(A)
    B(A) \(a(b-1)\) \(\sigma_{\epsilon}^{2} + n \sigma_{\gamma}^{2} + nc \sigma_{\beta}^{2}\) MSB(A) / MSC(AB)
    C(A,B) \(ab(c-1)\) \(\sigma_{\epsilon}^{2} + n \sigma_{\gamma}^{2}\) MSC(AB) / MSE
    Error \(abc(n-1)\) \(\sigma_{\epsilon}^{2}\)
    Total \(abcn -1\)

    In this case, each \(F\)-test we construct for the sources will be based on different denominators.


    This page titled 6.4: Special Case - Fully Nested Random Effects Design is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Penn State's Department of Statistics.

    • Was this article helpful?