Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://stats.libretexts.org/Courses/Fresno_City_College/New_FCC_DS_21_Finite_Mathematics_-_Spring_2023/04%3A_Exponential_and_Logarithmic_Functions/4.04%3A_Logarithms_and_Logarithmic_Functions
    With the change of base formula, logb(A)=logc(A)logc(b) for any bases b, c>0, we can finally find a decimal approximation to our question from the beginning of the...With the change of base formula, logb(A)=logc(A)logc(b) for any bases b, c>0, we can finally find a decimal approximation to our question from the beginning of the section. The logarithm (base b) function, written log b (x), is the inverse of the exponential function (base b), b x . Properties of Logs: Change of Base: logb(A)=logc(A)logc(b) for any base b,c>0

Support Center

How can we help?