Search
- Filter Results
- Location
- Classification
- Include attachments
- https://stats.libretexts.org/Under_Construction/Purgatory/FCC_-_Finite_Mathematics_-_Spring_2023/09%3A_Linear_Programming_-_The_Simplex_Method/9.03%3A_Minimization_By_The_Simplex_Method/9.3.01%3A_Minimization_By_The_Simplex_Method_(Exercises)\text { Minimize } & \mathrm{z}=5 \mathrm{x}_{1}+6 \mathrm{x}_{2}+7 \mathrm{x}_{3} \\ \text { subject to } & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \quad \geq 10 \\ & 4 \mathrm{x}_{1}+3 \m...\text { Minimize } & \mathrm{z}=5 \mathrm{x}_{1}+6 \mathrm{x}_{2}+7 \mathrm{x}_{3} \\ \text { subject to } & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \quad \geq 10 \\ & 4 \mathrm{x}_{1}+3 \mathrm{x}_{2}+5 \mathrm{x}_{3} \geq 12 \\ &\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq & 0 If Food A costs $3 per unit, Food B costs $2 per unit and Food C costs $3 per unit, how many units of each food should be purchased to keep costs at a minimum?
- https://stats.libretexts.org/Sandboxes/JolieGreen/Finite_Mathematics_-_Spring_2023_-_OER/09%3A_Linear_Programming_-_The_Simplex_Method/9.03%3A_Minimization_By_The_Simplex_Method/9.3.01%3A_Minimization_By_The_Simplex_Method_(Exercises)\text { Minimize } & \mathrm{z}=5 \mathrm{x}_{1}+6 \mathrm{x}_{2}+7 \mathrm{x}_{3} \\ \text { subject to } & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \quad \geq 10 \\ & 4 \mathrm{x}_{1}+3 \m...\text { Minimize } & \mathrm{z}=5 \mathrm{x}_{1}+6 \mathrm{x}_{2}+7 \mathrm{x}_{3} \\ \text { subject to } & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \quad \geq 10 \\ & 4 \mathrm{x}_{1}+3 \mathrm{x}_{2}+5 \mathrm{x}_{3} \geq 12 \\ &\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq & 0 If Food A costs $3 per unit, Food B costs $2 per unit and Food C costs $3 per unit, how many units of each food should be purchased to keep costs at a minimum?
- https://stats.libretexts.org/Courses/Fresno_City_College/New_FCC_DS_21_Finite_Mathematics_-_Spring_2023/09%3A_Linear_Programming_-_The_Simplex_Method/9.03%3A_Minimization_By_The_Simplex_Method/9.3.01%3A_Minimization_By_The_Simplex_Method_(Exercises)\text { Minimize } & \mathrm{z}=5 \mathrm{x}_{1}+6 \mathrm{x}_{2}+7 \mathrm{x}_{3} \\ \text { subject to } & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \quad \geq 10 \\ & 4 \mathrm{x}_{1}+3 \m...\text { Minimize } & \mathrm{z}=5 \mathrm{x}_{1}+6 \mathrm{x}_{2}+7 \mathrm{x}_{3} \\ \text { subject to } & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \quad \geq 10 \\ & 4 \mathrm{x}_{1}+3 \mathrm{x}_{2}+5 \mathrm{x}_{3} \geq 12 \\ &\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq & 0 If Food A costs $3 per unit, Food B costs $2 per unit and Food C costs $3 per unit, how many units of each food should be purchased to keep costs at a minimum?