The exponential function \(y=b^x\) is increasing if \(b>1\) and decreasing if \(0<b<1\). Its domain is \((−∞,∞)\) and its range is \((0,∞)\). The logarithmic function \(y=\log_b(x)\) is the inverse of...The exponential function \(y=b^x\) is increasing if \(b>1\) and decreasing if \(0<b<1\). Its domain is \((−∞,∞)\) and its range is \((0,∞)\). The logarithmic function \(y=\log_b(x)\) is the inverse of \(y=b^x\). Its domain is \((0,∞)\) and its range is \((−∞,∞)\). The natural exponential function is \(y=e^x\) and the natural logarithmic function is \(y=\ln x=\log_e x\). Given an exponential function or logarithmic function in base \(a\), we can make a change of base to convert this function to a