# 4.9: Putting It Together- Nonlinear Models

- Page ID
- 14071

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

## Let’s Summarize

This is what we have learned about exponential models:

The general form of an *exponential model* is *y = C · b ^{x}*.

- Exponential models are nonlinear. More specifically, exponential models predict that
*y*increases or decreases by a constant percentage for each 1-unit increase in*x*.

*C*is the*initial value*. It is the*y*-value when*x*= 0. It is also the*y*-intercept.

*b*is the*growth factor*or*decay factor*.*b*is always positive.- If
*b*is greater than 1,*b*is a growth factor. In this case, the association is positive, and*y*is increasing. This makes sense because multiplying by a number greater than 1 increases the initial value. From the growth factor, we can determine the percent increase in*y*for each additional 1-unit increase in*x*. - Similarly, if
*b*is greater than 0 and less than 1,*b*is a decay factor. In this case, the association is negative, and*y*is decreasing. From the decay factor, we can determine the*percentage decrease*in*y*for each additional 1-unit increase in*x*.

- If

Let’s compare the general form of an exponential model to the general form for a *linear model:**y* = *a* + *bx*.

- In the linear model,
*a*is the*initial value*. It is the*y*-value when*x*= 0. It is also the*y*-intercept.

*b*is the*slope*. From the slope, we can determine the*amount*and*direction*the*y*-value changes for each additional 1-unit increase in*x*. When*b*is positive, there is a positive association, and*y*increases. When*b*is negative, there is a negative association, and*y*decreases.

## Contributors and Attributions

CC licensed content, Shared previously

- Concepts in Statistics.
**Provided by**: Open Learning Initiative.**Located at**: http://oli.cmu.edu.**License**:*CC BY: Attribution*