Skip to main content
Statistics LibreTexts

Histograms

  • Page ID
    64196
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Bar Charts, Frequency Distributions, and Histograms

     

    Frequency Distributions, Bar Graphs, and Circle Graphs

    The frequency of a particular event is the number of times that the event occurs.  The relative frequency is the proportion of observed responses in the category.  

     

    Example:  We asked the students what country their car is from (or no car) and make a tally of the answers.  Then we computed the frequency and relative frequency of each category.  The relative frequency is computed by dividing the frequency by the total number of respondents.  The following table summarizes.

     

    Country Frequency Relative Frequency
    US 6 0.3
    Japan 7 0.35
    Europe 2 0.1
    Korea 1 0.05
    None 4 0.2
    Total 20 1

     

    Below is a bar graph for the car data.  This bar graph is called a Pareto chart since the height represents the frequency.  Notice that the widths of the bars are always the same.

                 Pareto Chart with the frequencies of five countries

    We make a circle graph often called a pie chart of this data by placing wedges in the circle of proportionate size to the frequencies.

    Below is a circle graph the shows this data.

             Pie Chart showing five countries' frequency

    to find the angles of each of the slices we use the formula

    \( \text{        Angle} = \frac{\text{Frequency}}{\text{Total}} \text{x} 360 \)

    For example to find the angle for US cars we have
            \(\text{       Angle}  =  \frac{6}{20}   \text{x} 360  =  108 \text{degrees}\)
     


     

    Histograms  

    Histograms are bar graphs whose vertical coordinate is the frequency count and whose horizontal coordinate corresponds to a numerical interval.

    Example:  

    The depth of clarity of Lake Tahoe was measured at several different places with the results in inches as follows:  

    15.4,   16.7,   16.9,   17.0,   20.2,   25.3,   28.8,   29.1,   30.4,   34.5, 

    36.7,   39.1,   39.4,   39.6,   39.8,   40.1,   42.3,   43.5,   45.6,   45.9, 

    48.3,   48.5,   48.7,   49.0,   49.1,   49.3,   49.5,   50.1,   50.2,   52.3


    We use a frequency distribution table with class intervals of length 5.

     

     
    Class Interval Frequency Relative Frequency Cumulative Relative Frequency
    15 -<20 4 0.129 0.129
    20 -<25 1 0.032 0.161
    25 -< 30 3 0.097 0.258
    30 -< 35 2 0.065 0.323
    35 -< 40 6 0.194 0.516
    40 -< 45 3 0.097 0.613
    45 -< 50 9 0.290 0.903
    50 -< 55 3 0.097 1.000
    Total 31 1.000  

    Below is the graph of the histogram 

     

                unimodal histogram that is skewed left

     

    The Shape of a Histogram

    A histogram is unimodal if there is one hump, bimodal if there are two humps and multimodal if there are many humps.  A nonsymmetric histogram is called skewed if it is not symmetric.  If the upper tail is longer than the lower tail then it is positively skewed.  If the upper tail is shorter than it is negatively skewed.  

     

    Unimodal, Symmetric, Nonskewed

    Symmetric unimodal histogram

    Nonsymmetric, Skewed Right

    Nonsymmetric skewed right unimodal histogram

     

    Bimodal

    bimodal histogram

     

     


    Back to the Descriptive Statistics Home Page

     

    Histograms is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?