1.1: What is Statistics?
- Page ID
- 16332
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)You are exposed to statistics in many parts of your life. If you are a sports fan, then you have the statistics for your favorite player. If you are interested in politics, then you look at the polls to see how people feel about certain issues or candidates. If you are an environmentalist, then you research arsenic levels in the water of a town or analyze the global temperatures. If you are in the business profession, then you may track the monthly sales of a store or use quality control processes to monitor the number of defective parts manufactured. If you are in the health profession, then you may look at how successful a procedure is or the percentage of people infected with a disease. There are many other examples from other areas. To understand how to collect data and analyze it, you need to understand what the field of statistics is and the basic definitions.
Definition \(\PageIndex{1}\)
Statistics is the study of how to collect, organize, analyze, and interpret data collected from a group.
There are two branches of statistics. One is called descriptive statistics, which is where you collect and organize data. The other is called inferential statistics, which is where you analyze and interpret data. First you need to look at descriptive statistics since you will use the descriptive statistics when making inferences.
To understand how to create descriptive statistics and then conduct inferences, there are a few definitions that you need to look at. Note, many of the words that are defined have common definitions that are used in non-statistical terminology. In statistics, some have slightly different definitions. It is important that you notice the difference and utilize the statistical definitions.
The first thing to decide in a statistical study is whom you want to measure and what you want to measure. You always want to make sure that you can answer the question of whom you measured and what you measured. The who is known as the individual and the what is the variable.
Definition \(\PageIndex{2}\)
Individual – a person or object that you are interested in finding out information about.
Definition \(\PageIndex{3}\)
Variable – the measurement or observation of the individual.
If you put the individual and the variable into one statement, then you obtain a population.
Definition \(\PageIndex{4}\)
Population – set of all values of the variable for the entire group of individuals.
Notice, the population answers who you want to measure and what you want to measure. Make sure that your population always answers both of these questions. If it doesn’t, then you haven’t given someone who is reading your study the entire picture. As an example, if you just say that you are going to collect data from the senators in the U.S. Congress, you haven’t told your reader want you are going to collect. Do you want to know their income, their highest degree earned, their voting record, their age, their political party, their gender, their marital status, or how they feel about a particular issue? Without telling what you want to measure, your reader has no idea what your study is actually about.
Sometimes the population is very easy to collect. Such as if you are interested in finding the average age of all of the current senators in the U.S. Congress, there are only 100 senators. This wouldn’t be hard to find. However, if instead you were interested in knowing the average age that a senator in the U.S. Congress first took office for all senators that ever served in the U.S. Congress, then this would be a bit more work. It is still doable, but it would take a bit of time to collect. But what if you are interested in finding the average diameter of breast height of all of the Ponderosa Pine trees in the Coconino National Forest? This would be impossible to actually collect. What do you do in these cases? Instead of collecting the entire population, you take a smaller group of the population, kind of a snap shot of the population. This smaller group is called a sample.
Definition \(\PageIndex{5}\)
Sample – a subset from the population. It looks just like the population, but contains less data
How you collect your sample can determine how accurate the results of your study are. There are many ways to collect samples. Some of them create better samples than others. No sampling method is perfect, but some are better than others. Sampling techniques will be discussed later. For now, realize that every time you take a sample you will find different data values. The sample is a snapshot of the population, and there is more information than is in the picture. The idea is to try to collect a sample that gives you an accurate picture, but you will never know for sure if your picture is the correct picture. Unlike previous mathematics classes where there was always one right answer, in statistics there can be many answers, and you don’t know which are right.
Once you have your data, either from a population or a sample, you need to know how you want to summarize the data. As an example, suppose you are interested in finding the proportion of people who like a candidate, the average height a plant grows to using a new fertilizer, or the variability of the test scores. Understanding how you want to summarize the data helps to determine the type of data you want to collect. Since the population is what we are interested in, then you want to calculate a number from the population. This is known as a parameter. As mentioned already, you can’t really collect the entire population. Even though this is the number you are interested in, you can’t really calculate it. Instead you use the number calculated from the sample, called a statistic, to estimate the parameter. Since no sample is exactly the same, the statistic values are going to be different from sample to sample. They estimate the value of the parameter, but again, you do not know for sure if your answer is correct.
Definition \(\PageIndex{6}\)
Parameter – a number calculated from the population. Usually denoted with a Greek letter. This number is a fixed, unknown number that you want to find.
Definition \(\PageIndex{7}\)
Statistic – a number calculated from the sample. Usually denoted with letters from the Latin alphabet, though sometimes there is a Greek letter with a ^ (called a hat) above it. Since you can find samples, it is readily known, though it changes depending on the sample taken. It is used to estimate the parameter value.
One last concept to mention is that there are two different types of variables – qualitative and quantitative. Each type of variable has different parameters and statistics that you find. It is important to know the difference between them.
Definition \(\PageIndex{8}\)
Qualitative or categorical variable – answer is a word or name that describes a quality of the individual.
Definition \(\PageIndex{9}\)
Quantitative or numerical variable – answer is a number, something that can be counted or measured from the individual.
Example \(\PageIndex{1}\) stating definitions for qualitative variable
In 2010, the Pew Research Center questioned \(1500\) adults in the U.S. to estimate the proportion of the population favoring marijuana use for medical purposes. It was found that \(73\)% are in favor of using marijuana for medical purposes. State the individual, variable, population, and sample.
Solution
Individual – a U.S. adult
Variable – the response to the question “should marijuana be used for medical purposes?” This is qualitative data since you are recording a person’s response – yes or no.
Population – set of all responses of adults in the U.S.
Sample – set of 1500 responses of U.S. adults who are questioned.
Parameter – proportion of those who favor marijuana for medical purposes calculated from population
Statistic– proportion of those who favor marijuana for medical purposes calculated from sample
Example \(\PageIndex{2}\) stating definitions for qualitative variable
A parking control officer records the manufacturer of every \(5^{th}\) car in the college parking lot in order to guess the most common manufacturer.
Solution
Individual – a car in the college parking lot
Variable – the name of the manufacturer. This is qualitative data since you are recording a car type.
Population – set of all names of the manufacturer of cars in the college parking lot.
Sample – set of recorded names of the manufacturer of the cars in college parking lot
Parameter – proportion of each car type calculated from population
Statistic – proportion of each car type calculated from sample
Example \(\PageIndex{3}\) stating definitions for quantitative variable
A biologist wants to estimate the average height of a plant that is given a new plant food. She gives \(10\) plants the new plant food. State the individual, variable, population, and sample.
Solution
Individual – a plant given the new plant food
Variable – the height of the plant (Note: it is not the average height since you cannot measure an average – it is calculated from data.) This is quantitative data since you will have a number.
Population – set of all the heights of plants when the new plant food is used
Sample – set of \(10\) heights of plants when the new plant food is used
Parameter – average height of all plants
Statistic – average height of \(10\) plants
Example \(\PageIndex{4}\) stating definitions for quantitative variable
A doctor wants to see if a new treatment for cancer extends the life expectancy of a patient versus the old treatment. She gives one group of \(25\) cancer patients the new treatment and another group of \(25\) the old treatment. She then measures the life expectancy of each of the patients. State the individuals, variables, populations, and samples.
Solution
In this example there are two individuals, two variables, two populations, and two samples.
Individual 1: cancer patient given new treatment
Individual 2: cancer patient given old treatment
Variable 1: life expectancy when given new treatment. This is quantitative data since you will have a number.
Variable 2: life expectancy when given old treatment. This is quantitative data since you will have a number.
Population 1: set of all life expectancies of cancer patients given new treatment
Population 2: set of all life expectancies of cancer patients given old treatment
Sample 1: set of \(25\) life expectancies of cancer patients given new treatment
Sample 2: set of \(25\) life expectancies of cancer patients given old treatment
Parameter 1 – average life expectancy of all cancer patients given new treatment
Parameter 2 – average life expectancy of all cancer patients given old treatment
Statistic 1 – average life expectancy of \(25\) cancer patients given new treatment
Statistic 2 – average life expectancy of \(25\) cancer patients given old treatment
There are different types of quantitative variables, called discrete or continuous. The difference is in how many values can the data have. If you can actually count the number of data values (even if you are counting to infinity), then the variable is called discrete. If it is not possible to count the number of data values, then the variable is called continuous.
Definition \(\PageIndex{10}\)
Discrete data can only take on particular values like integers. Discrete data are usually things you count.
Definition \(\PageIndex{11}\)
Continuous data can take on any value. Continuous data are usually things you measure.
Example \(\PageIndex{5}\) discrete or continuous
Classify the quantitative variable as discrete or continuous,
- The weight of a cat.
- The number of fleas on a cat.
- The size of a shoe.
Solution
- This is continuous since it is something you measure.
- This is discrete since it is something you count.
- This is discrete since you can only be certain values, such as \(7, 7.5, 8, 8.5, 9\). You can't buy a \(9.73\) shoe.
Homework
Exercise \(\PageIndex{1}\)
- Suppose you want to know how Arizona workers age \(16\) or older travel to work. To estimate the percentage of people who use the different modes of travel, you take a sample containing \(500\) Arizona workers age \(16\) or older. State the individual, variable, population, sample, parameter, and statistic.
- You wish to estimate the mean cholesterol levels of patients two days after they had a heart attack. To estimate the mean you collect data from \(28\) heart patients. State the individual, variable, population, sample, parameter, and statistic.
- Print-O-Matic would like to estimate their mean salary of all employees. To accomplish this they collect the salary of \(19\) employees. State the individual, variable, population, sample, parameter, and statistic.
- To estimate the percentage of households in Connecticut which use fuel oil as a heating source, a researcher collects information from \(1000\) Connecticut households about what fuel is their heating source. State the individual, variable, population, sample, parameter, and statistic.
- The U.S. Census Bureau needs to estimate the median income of males in the U.S., they collect incomes from \(2500\) males. State the individual, variable, population, sample, parameter, and statistic.
- The U.S. Census Bureau needs to estimate the median income of females in the U.S., they collect incomes from \(3500\) females. State the individual, variable, population, sample, parameter, and statistic.
- Eyeglassmatic manufactures eyeglasses and they would like to know the percentage of each defect type made. They review \(25,891\) defects and classify each defect that is made. State the individual, variable, population, sample, parameter, and statistic.
- The World Health Organization wishes to estimate the mean density of people per square kilometer, they collect data on \(56\) countries. State the individual, variable, population, sample, parameter, and statistic
- Answer
-
1. See solutions
3. See solutions
5. See solutions
7. See solutions