Skip to main content
Statistics LibreTexts

8.6: Chapter Formula Review

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A Confidence Interval for a Population Standard Deviation Unknown

    \(s\) = the standard deviation of sample values.

    \(t=\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) is the formula for the t-score which measures how far away a measure is from the population mean in the Student’s t-distribution

    \(df = n - 1\); the degrees of freedom for a Student’s t-distribution where \(n\) represents the size of the sample

    \(T \sim t_{d f}\) the random variable, \(T\), has a Student’s t-distribution with df degrees of freedom

    The general form for a confidence interval for a single mean, population standard deviation unknown Student's t is given by: \(\overline{x}-t_{\mathrm{v}, \alpha}\left(\frac{s}{\sqrt{n}}\right) \leq \mu \leq \overline{x}+t_{\mathrm{v}, \alpha}\left(\frac{s}{\sqrt{n}}\right)\)

    A Confidence Interval for A Population Proportion

    \(p^{\prime}=\frac{x}{n}\) where \(x\) represents the number of successes in a sample and \(n\) represents the sample size. The variable p′ is the sample proportion and serves as the point estimate for the true population proportion.


    The variable \(p^{\prime}\) has a binomial distribution that can be approximated with the normal distribution shown here. The confidence interval for the true population proportion is given by the formula:

    \(\mathrm{p}^{\prime}-Z_{\alpha} \sqrt{\frac{\mathrm{p}^{\prime} \mathrm{q}^{\prime}}{n}} \leq p \leq \mathrm{p}^{\prime}+Z_{\alpha} \sqrt{\frac{\mathrm{p}^{\prime} \mathrm{q}^{\prime}}{n}}\)

    \(n=\frac{Z_{\frac{\alpha}{2}}^{2} p^{\prime} q^{\prime}}{e^{2}}\) provides the number of observations needed to sample to estimate the population proportion, \(p\), with confidence \(1 - \alpha\) and margin of error \(e\). Where \(e\) = the acceptable difference between the actual population proportion and the sample proportion.

    Calculating the Sample Size n: Continuous and Binary Random Variables

    \(n=\frac{Z^{2} \sigma^{2}}{(\overline{x}-\mu)^{2}}\) = the formula used to determine the sample size (\(n\)) needed to achieve a desired margin of error at a given level of confidence for a continuous random variable

    \(n=\frac{Z_{\alpha}^{2} \mathrm{pq}}{e^{2}}\) = the formula used to determine the sample size if the random variable is binary

    8.6: Chapter Formula Review is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.