8.6: Chapter Formula Review

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

A Confidence Interval for a Population Standard Deviation Unknown

$$s$$ = the standard deviation of sample values.

$$t=\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}$$ is the formula for the t-score which measures how far away a measure is from the population mean in the Student’s t-distribution

$$df = n - 1$$; the degrees of freedom for a Student’s t-distribution where $$n$$ represents the size of the sample

$$T \sim t_{d f}$$ the random variable, $$T$$, has a Student’s t-distribution with df degrees of freedom

The general form for a confidence interval for a single mean, population standard deviation unknown Student's t is given by: $$\overline{x}-t_{\mathrm{v}, \alpha}\left(\frac{s}{\sqrt{n}}\right) \leq \mu \leq \overline{x}+t_{\mathrm{v}, \alpha}\left(\frac{s}{\sqrt{n}}\right)$$

A Confidence Interval for A Population Proportion

$$p^{\prime}=\frac{x}{n}$$ where $$x$$ represents the number of successes in a sample and $$n$$ represents the sample size. The variable p′ is the sample proportion and serves as the point estimate for the true population proportion.

$$q^{\prime}=1-p^{\prime}$$

The variable $$p^{\prime}$$ has a binomial distribution that can be approximated with the normal distribution shown here. The confidence interval for the true population proportion is given by the formula:

$$\mathrm{p}^{\prime}-Z_{\alpha} \sqrt{\frac{\mathrm{p}^{\prime} \mathrm{q}^{\prime}}{n}} \leq p \leq \mathrm{p}^{\prime}+Z_{\alpha} \sqrt{\frac{\mathrm{p}^{\prime} \mathrm{q}^{\prime}}{n}}$$

$$n=\frac{Z_{\frac{\alpha}{2}}^{2} p^{\prime} q^{\prime}}{e^{2}}$$ provides the number of observations needed to sample to estimate the population proportion, $$p$$, with confidence $$1 - \alpha$$ and margin of error $$e$$. Where $$e$$ = the acceptable difference between the actual population proportion and the sample proportion.

Calculating the Sample Size n: Continuous and Binary Random Variables

$$n=\frac{Z^{2} \sigma^{2}}{(\overline{x}-\mu)^{2}}$$ = the formula used to determine the sample size ($$n$$) needed to achieve a desired margin of error at a given level of confidence for a continuous random variable

$$n=\frac{Z_{\alpha}^{2} \mathrm{pq}}{e^{2}}$$ = the formula used to determine the sample size if the random variable is binary

8.6: Chapter Formula Review is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.