Skip to main content
Statistics LibreTexts

Ch 7.1 Central Limit Theorem for Sample Means

  • Page ID
    15911
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ch 7.1 Central Limit Theorem for Sample Means

    Sample distribution of sample mean:

    When sample means \( \bar{x} \)  of same size n taken from the same population, the Sample means have the following behavior:

    1)  If the population distribution of X is normal, the distribution of \( \bar{x} \) is always normal for all sample size n.

    population distribution   Sampling distribution

                                             Sampling distribution of x-bar
     

     2)  When population distribution of X is not normal, The sampling distribution x-bar tends to be a normal distribution. The distribution become closer to normal when sample size increase.

    clipboard_e2cadd98928fd8cf6efd71812518e5d76.png

    Activity to discover the Central Limit Theorem: 

    https://stats.libretexts.org/Bookshelves/Ancillary_Materials/02%3A_Interactive_Statistics/15%3A_Discover_the_Central_Limit_Theorem_Activity

    Central Limit Theorem for Sample Mean:

    For all sample of the same size n with n > 30, the sampling distribution of \( \bar{x} \) can be approximated by a normal distribution with mean μ and standard deviation \( \sigma _{\bar{x}} = \frac{\sigma}{\sqrt{n}} \)

    Note: -This applies to all distribution of x. If X is normally distributed, n > 30 is not needed. Any n will work.

          -The sample should be a Simple Random Sample.

     Central Limit Theorem:    \( \mu _{\bar{x}} = \mu  \),

                                           \( \sigma _{\bar{x}} = \frac{\sigma}{\sqrt{n} \)}    

    Ex1 A standardized test with scores that are normally distributed with mean μ = 150 and standard deviation σ = 18. A class of 20 students take the test. The mean score \( \bar{x} \) of the 20 students are calculated.

    a)  Is the distribution of mean score  \( \bar{x} \) of 20 students Normally distributed?

    Ans: Yes because the original score is Normal.

    a)  What is the mean and standard deviation of  ?

        Use Central Limit Theorem:  mean = 150,  SD = \( \frac{18}{\sqrt{20}}  \) ≈ 4.0249

    b) Find the probability that a student’s score is greater than 160.

    Normal bell curve Use Online Normal Calculator, Mean = 150, SD = 4.0249

    c)  Find the probability that the mean score \( \bar{x} \) of 20 students is greater than 160.

     

        Click above, enter 160. Recalculate.  P( \( \bar{x} \) > 160) = 0.0065

     

    Ex2: Coke cans are filled so that the actual amounts have a mean of 12 oz and a standard deviation of 0.11 oz. The distribution of amount of coke is unknown.

    a)  Is the distribution of mean amount of coke in 36 cans normally distributed?

        Yes, because n > 30, according to CLT, \( \bar{x} \) will be normally distributed.

    b) What is the mean and standard deviation of  \( \bar{x} \)?

        Ans: according to CLT:  \( \mu_ \bar{x} \) = 12, \(\sigma _{\bar{x}} \) = 0.11/√36 ≈ 0.01833

    c)   Find the percent of individual coke with amount between 11.9 to 12.1 oz.

         Use online Normal Calculator:  Mean = 12, SD = 0.11

         Click between, enter 11.9 and 12.1, Recalculate.  P( 11.9 < x < 12.1 ) = 0.6367

          63.67% of coke have amount between 11.9 oz to 12.1 oz.

    d)  Find the percent of mean amount of 36 coke with between 11.9 and 12.1 oz.

        Use online Normal Calculator:  Mean = 12, SD = 0.01833,

         Click between, enter 11.9 and 12.1, Recalculate.  P( 11.9 < \( \bar{x} \) < 12.1 ) = 1

         100% of mean amount of 36 coke is between 11.9 and 12.1 oz.

     

    Ex3. Annual incomes are known to have a distribution that is skewed to the right. Assume that 20

    workers’ mean incomes \( \bar{x} \)  are collected.

    a)   Will the distribution of mean income \( \bar{x} \)  be normally distributed?

    Ans: No, since X is not normal and n < 30, CLT does not apply,  \( \bar{x} \) may not be normally distributed.


    Ch 7.1 Central Limit Theorem for Sample Means is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?