# Ch 7.1 Central Limit Theorem for Sample Means

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Ch 7.1 Central Limit Theorem for Sample Means

### Sample distribution of sample mean:

When sample means $$\bar{x}$$  of same size n taken from the same population, the Sample means have the following behavior:

1)  If the population distribution of X is normal, the distribution of $$\bar{x}$$ is always normal for all sample size n.

Sampling distribution of x-bar

2)  When population distribution of X is not normal, The sampling distribution x-bar tends to be a normal distribution. The distribution become closer to normal when sample size increase.

Activity to discover the Central Limit Theorem:

https://stats.libretexts.org/Bookshelves/Ancillary_Materials/02%3A_Interactive_Statistics/15%3A_Discover_the_Central_Limit_Theorem_Activity

Central Limit Theorem for Sample Mean:

For all sample of the same size n with n > 30, the sampling distribution of $$\bar{x}$$ can be approximated by a normal distribution with mean μ and standard deviation $$\sigma _{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Note: -This applies to all distribution of x. If X is normally distributed, n > 30 is not needed. Any n will work.

-The sample should be a Simple Random Sample.

Central Limit Theorem:    $$\mu _{\bar{x}} = \mu$$,

$$\sigma _{\bar{x}} = \frac{\sigma}{\sqrt{n}$$}

Ex1 A standardized test with scores that are normally distributed with mean μ = 150 and standard deviation σ = 18. A class of 20 students take the test. The mean score $$\bar{x}$$ of the 20 students are calculated.

a)  Is the distribution of mean score  $$\bar{x}$$ of 20 students Normally distributed?

Ans: Yes because the original score is Normal.

a)  What is the mean and standard deviation of  ?

Use Central Limit Theorem:  mean = 150,  SD = $$\frac{18}{\sqrt{20}}$$ ≈ 4.0249

b) Find the probability that a student’s score is greater than 160.

Use Online Normal Calculator, Mean = 150, SD = 4.0249

c)  Find the probability that the mean score $$\bar{x}$$ of 20 students is greater than 160.

Click above, enter 160. Recalculate.  P( $$\bar{x}$$ > 160) = 0.0065

Ex2: Coke cans are filled so that the actual amounts have a mean of 12 oz and a standard deviation of 0.11 oz. The distribution of amount of coke is unknown.

a)  Is the distribution of mean amount of coke in 36 cans normally distributed?

Yes, because n > 30, according to CLT, $$\bar{x}$$ will be normally distributed.

b) What is the mean and standard deviation of  $$\bar{x}$$?

Ans: according to CLT:  $$\mu_ \bar{x}$$ = 12, $$\sigma _{\bar{x}}$$ = 0.11/√36 ≈ 0.01833

c)   Find the percent of individual coke with amount between 11.9 to 12.1 oz.

Use online Normal Calculator:  Mean = 12, SD = 0.11

Click between, enter 11.9 and 12.1, Recalculate.  P( 11.9 < x < 12.1 ) = 0.6367

63.67% of coke have amount between 11.9 oz to 12.1 oz.

d)  Find the percent of mean amount of 36 coke with between 11.9 and 12.1 oz.

Use online Normal Calculator:  Mean = 12, SD = 0.01833,

Click between, enter 11.9 and 12.1, Recalculate.  P( 11.9 < $$\bar{x}$$ < 12.1 ) = 1

100% of mean amount of 36 coke is between 11.9 and 12.1 oz.

Ex3. Annual incomes are known to have a distribution that is skewed to the right. Assume that 20

workers’ mean incomes $$\bar{x}$$  are collected.

a)   Will the distribution of mean income $$\bar{x}$$  be normally distributed?

Ans: No, since X is not normal and n < 30, CLT does not apply,  $$\bar{x}$$ may not be normally distributed.

Ch 7.1 Central Limit Theorem for Sample Means is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.