Skip to main content
Statistics LibreTexts

Ch 3.3 Addition and Multiplication Rule

  • Page ID
    15894
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Addition Rule:

    Addition Rule are used to find “OR” in a procedure.

    P(A or B) = P(A) + P(B) – P(A and B)

    If A and B are mutually exclusive: P(A and B) = 0

    P(A or B) = P(A)+ P (B) when A, B are mutually exclusive.

     

    Ex1.  Toss a 6-face die once, use addition rule method to find  P(one or odd).

    P(one or odd) = P(one) + P(odd) – P(one and odd)

                               = 1/6 + 3/6 – 1/6 = 3/6  =0.5

     

    Ex2.  Toss a 6-face die once, use addition rule method to find P( one or even) 

    Because one and even or mutully exclusive, so P (one or even) = P(one) + P(even)  =  1/6 + 3/6 = 0.667  

     

    Ex3. Use the contingency table below:

    contingency table

    GT = 51

    Use addition rule to find P(male or iPhone).

    P(male or iPhone) = P(male) + P(iPhone) – P(male and iPhone)   = 21/51 + 42/51 – 18/51 = (21+41-18)/51 =45/51 = 0.8823

     

    Multiplication Rule:

    Multiplication Rule is used to find probability of two events: A and B.

     \( \text{P(A and B)} = P(A) * P(B|A) \)

    If A and B are independent, P(B|A) = P(B) so

      \( \text{P(A and B)} = P(A) * P(B) \) when A, B are independent.

    A result of the multiplication rule gives the formula for conditional probability as:

    \(\\text{P(A given B)}=\text{P(A | B)} =\frac{\text{A and B}}{P(B)} \)

    Ex1: Given the two-way table below:

    contingency table

    Find P( male |iPhone) =  P( male and iPhone)/P(iPhone) =  \(\frac{18/51}{42/51} = \frac{18}{42} = 0.4286 \)

     


    Ch 3.3 Addition and Multiplication Rule is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?