Skip to main content
Statistics LibreTexts

12: Random Walks

  • Page ID
    3177
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    • 12.1: Random Walks in Euclidean Space**
      In the last several chapters, we have studied sums of random variables with the goal being to describe the distribution and density functions of the sum. In this chapter, we shall look at sums of discrete random variables from a different perspective. We shall be concerned with properties which can be associated with the sequence of partial sums, such as the number of sign changes of this sequence, the number of terms in the sequence which equal 0, and the expected size of the maximum term in th
    • 12.2: Gambler's Ruin
    • 12.3: Arc Sine Laws**

    Thumbnail: Random walk in two dimensions. (Public Domain; László Németh via Wikipedia).


    12: Random Walks is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Charles M. Grinstead & J. Laurie Snell via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.