Simple Linear Regression (with one predictor)
- Page ID
- 239
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Model
\(X\) and \(Y\) are the predictor and response variables, respectively. Fit the model,Interpretation
Look at the scatter plot of \(Y\) (vertical axis) versus \(X\) (horizontal axis). Consider narrow vertical strips around the different values of \(X\):- Means (measure of center) of the points falling in the vertical strips lie (approximately) on a straight line with slope \(\beta_1\) and intercept \(\beta_0\).
- Standard deviations (measure of spread) of the points falling in each vertical strip are (roughly) the same.
Estimation of \(\beta_0 \) and \( \beta_1 \)
We employ the method of least squares to estimate \(\beta_0\) and \(\beta_1\). This means, we minimize the sum of squared errors : \(Q(\beta_0,\beta_1) = \sum_{i=1}^n(Y_i-\beta_0-\beta_1X_i)^2\). This involves differentiating \(Q(\beta_0,\beta_1)\) with respect to the parameters \(\beta_0\) and \(\beta_1\) and setting the derivatives to zero. This gives us the normal equations: \[nb_0 + b_1\sum_{i=1}^nX_i = \sum_{i=1}^nY_i\] \[b_0\sum_{i=1}^nX_i+b_1\sum_{i=1}^nX_i^2 = \sum_{i=1}^nX_iY_i\] Solving these equations, we have: \[b_1=\frac{\sum_{i=1}^nX_iY_i-n\overline{XY}}{\sum_{i=1}^nX_i^2-n\overline{X}^2} = \frac{\sum_{i=1}^n(X_i-\overline{X})(Y_i-\overline{y})}{\sum_{i=1}^n(X_i-\overline{X})^2}, b_0 = \overline{Y}-b_1\overline{X}\] \(b_0\) and \(b_1\) are the estimates of \(\beta_0\) and \(\beta_1\), respectively, and are sometimes denoted as \(\widehat\beta_0\) and \(\widehat\beta_1\).Prediction
The fitted regression line is given by the equation: \[\widehat{Y} = b_0 + b_1X\] and is used to predict the value of \(Y\) given a value of \(X\).Residuals
- \(\sum_{i}e_i = 0\).
- \(\sum_{i}e_i^2 \leq \sum_{i}(Y_i - u_0 - u_1X_i)^2\) for any \((u_0, u_1)\) (with equality when \((u_0, u_1)\) = \((b_0, b_1)\)).
- \(\sum_{i}Y_i = \sum_{i}\widehat{Y}_i\).
- \(\sum_{i}X_ie_i = 0\).
- \(\sum_{i}\widehat{Y}_ie_i = 0\).
- Regression line passes through the point \((\overline{X},\overline{Y})\)
- The slope \(b_1\) of the regression line can be expressed as \(b_1 = r_{XY}\frac{sy}{sx}\), where \(r_{XY}\) is the correlation coefficient between \(X\) and \(Y\) and \(s_X\) and \(s_Y\) are the standard deviations of \(X\) and \(Y\).
Estimation of \(\sigma^2\)
Contributors
- Debashis Paul (UCD)
- Scott Brunstein (UCD)