R Tutorial for ANOVA and Linear Regression
- Page ID
- 251
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)ANOVA table
- Let's say we have collected data, and our X values have been entered in R as an array called data.X, and our Y values as data.Y. Now, we want to find the ANOVA values for the data. We can do this through the following steps:
- First, we should fit our data to a model. > data.lm = lm(data.Y~data.X)
- Next, we can get R to produce an ANOVA table by typing : > anova(data.lm)
- Now, we should have an ANOVA table!
Fitted Values
- To obtain the fitted values of the model from our previous example, we type: > data.fit = fitted(data.lm)
- This gives us an array called "data.fit" that contains the fitted values of data.lm
Residuals
- Now we want to obtain the residuals of the model: > data.res = resid(data.lm)
- Now we have an array of the residuals.
Hypothesis testing
- If you have already found the ANOVA table for your data, you should be able to calculate your test statistic from the numbers given.
- Let's say we want to find the F - quantile given by \( \large \mathbf{F} (.95; 3 , 24) \). We can find this by typing > qf(.95, 3, 24)
- To find the t - quantile given by \( \large \mathbf{t} (.975; 1, 19) \) , we would type: > qt(.975, 1, 19)
P - values
-
To get the p - value for the F - quantile of, say, 2.84 , with degrees of freedom 3 and 24, we would type in > pf(2.84, 3, 24)
Normal Q-Q plot
- We want to obtain the Normal Probability plot for the standardized residuals of our data, "data.lm".
- We have already fit our data to a model, but we now need the studentized residuals:
> data.stdres = rstandard(data.lm)
- Now, we make the plot by typing: > qqnorm(data.stdres)
- Now, to see the line, type: > qqline(data.stdres)
More on Linear Regression
Fitting a Model
- Let's say we have two X variables in our data, and we want to find a multiple regression model. Once again, let's say our Y values have been saved as a vector titled "data.Y". Now, let's assume that the X values for the first variable are saved as "data.X1", and those for the second variable as "data.X2".
- If we want to fit our data to the model \( \large Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i \) , we can type:
> data.lm.mult = lm(data.Y ~ data.X1 + data.X2).
- This has given us a model to work with, titled "data.lm.mult"
Summary of Model
- We can now see our model by typing > summary(data.lm.mult)
- The summary should list the estimates, the standard errors, and the t-values of each variable. The summary also lists the Residual Standard Error, the Multiple and Adjusted R-squared values, and other very useful information.
Pairwise Comparison Scatterplot Matrix
- Let's say we have a model with three different variables (the variables are named "data.X", "data.Y", and "data.Z"). We can compare the variables against eachother in a scatterplot matrix easily by typing:
> pairs(cbind(data.X, data.Y, data.Z))
- If the variables are listed together in one data frame (let's say it's called "data.XYZ"), we can get the same matrix by typing: > pairs(data.XYZ)
Further Questions
- If you would like more information on any R instructions to be added to this page, please comment, noting what you would like to see, and we will work on putting up the information as soon as possible.
Contributors
- Valerie Regalia
- Debashis Paul