Skip to main content
Statistics LibreTexts

Inference in Simple Linear Regression

  • Page ID
    224
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Inference in Simple Linear Regression

    • Fact : Under normal regression model \((b_0,b_1)\) and \(SSE\) are independently distributed and
      \(\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}\), \(\qquad \frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}\), \(\qquad SSE \sim \sigma^2 \chi_{n-2}^2\).

    • Confidence interval for \(\beta_0\) and \(\beta_1\) : \(100(1-\alpha)\%\) (two-sided) confidence interval for \(\beta_i\):
      \((b_i - t(1-\alpha/2;n-2) s(b_i)\), \(b_i + t(1-\alpha/2;n-2) s(b_i))\)


      for \(i=0,1\), where \(t(1-\alpha/2;n-2)\) is the \(1-\alpha/2\) upper cut-off point (or \((1-\alpha/2)\) quantile) of \(t_{n-2}\) distribution; i.e., \(P(t_{n-2} > t(1-\alpha/2;n-2)) = \alpha/2\).
    • Hypothesis tests for \(\beta_0\) and \(\beta_1\) : \(H_0 : \beta_i = \beta_{i0}\) (\(i=0\) or \(1\)).
      Test statistic : \(T_i = \frac{b_i - \beta_{i0}}{s(b_i)}\).
    1. Alternative: \(H_1 : \beta_i > \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(\frac{b_i - \beta_{i0}}{s(b_i)} > t(1-\alpha;n-2)\). Or if, P-value = \(P(t_{n-2} > T_i^{observed}) < \alpha\).
    2. Alternative: \(H_1 : \beta_i < \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(\frac{b_i - \beta_{i0}}{s(b_i)} < t(\alpha;n-2)\). Or if, P-value = \(P(t_{n-2} < T_i^{observed}) < \alpha\).
    3. Alternative: \(H_1 : \beta_i \neq \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(|\frac{b_i - \beta_{i0}}{s(b_i)}| > t(1-\alpha/2;n-2)\). Or if, P-value = \(P(|t_{n-2}| > |T_i^{observed}|) < \alpha\).

    Inference for mean response at \(X = X_h\)

    • Point estimate: \(\widehat Y_h = b_0 + b_1 X_h\).

      Fact: \(E(\widehat Y_h) = \beta_0 + \beta_1 X_h = E(Y_h)\), \(Var(\widehat Y_h) = \sigma^2(\widehat Y_h) = \sigma^2\left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]\). Estimated variance is \(s^2(\widehat Y_h) = MSE \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]\).

      Distribution: \(\frac{\widehat Y_h - E(Y_h)}{s(\widehat Y_h)} \sim t_{n-2}\).

      Confidence interval: \(100(1-\alpha)\)% confidence interval for \(E(Y_h)\) is \((\widehat Y_h - t(1-\alpha/2;n-2) s(\widehat Y_h),\widehat Y_h + t(1-\alpha/2;n-2) s(\widehat Y_h))\).

    Prediction of a new observation \(Y_{h(new)}\) at \(X = X_h\)

    • Prediction : \(\widehat Y_{h(new)} = \widehat Y_h = b_0 + b_1 X_h\).

      Error in prediction : \(Y_{h(new)} - \widehat Y_{h(new)} = Y_{h(new)} - \widehat Y_h\).

      Fact : \(\sigma^2(Y_{h(new)} - \widehat Y_h) = \sigma^2(Y_{h(new)}) + \sigma^2(\widehat Y_h) = \sigma^2 + \sigma^2(\widehat Y_h) = \sigma^2\left[1+\frac{1}{n}+ \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]\).

      Estimate of \(\sigma^2(Y_{h(new)} - \widehat Y_h)\) is \(s^2(Y_{h(new)} - \widehat Y_h) = MSE \left[1+\frac{1}{n}+ \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]\).

      Distribution : \(\frac{Y_{h(new)} - \widehat Y_h}{s(Y_{h(new)} -\widehat Y_h)} \sim t_{n-2}\).

      Prediction interval : \(100(1-\alpha)\)% prediction interval for \(Y_{h(new)}\) is \((\widehat Y_h - t(1-\alpha/2;n-2) s(Y_{h(new)}-\widehat Y_h),\widehat Y_h + t(1-\alpha/2;n-2) s(Y_{h(new)}-\widehat Y_h))\).
    • Confidence band for the regression line : At \(X=X_h\) the \(100(1-\alpha)\)% confidence band for the regression line is given by \(\widehat Y_h \pm w_\alpha s(\widehat Y_h), \qquad \mbox{where} \sim w_\alpha = \sqrt{2F(1-\alpha; 2, n-2)}\).

      Here \(F(1-\alpha;2,n-2)\) is the \(1-\alpha\) upper cut-off point (or, \((1-\alpha)\) quantile) for the \(F_{2,n-2}\) distribution (\(F\) distribution with d.f. \((2,n-2)\)).

    Example \(\PageIndex{1}\): Simple linear regression

    We consider a data set on housing price. Here\(Y=\) selling price of houses (in $1000), and \(X=\) size of house (100 square feet). The summary statistics are given below:

    \(n = 19\), \(\overline{X} = 15.719\), \(\overline{Y} = 75.211\)
    \(\sum_i(X_i - \overline{X})^2 = 40.805\), \(\sum_i (Y_i - \overline{Y})^2 = 556.078\), \(\sum_i (X_i - \overline{X})(Y_i - \overline{Y}) = 120.001\).

    Estimates of \(\beta_1\) and \(\beta_0\) :

    \[b_1 = \frac{\sum_i (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_i(X_i - \overline{X})^2} = \frac{120.001}{40.805} = 2.941\]

    and

    \[b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - (2.941)(15.719) = 28.981.\]

    • Fit and Prediction: The fitted regression line : \(Y = 28.981 + 2.941 X\). When \(X = 18.5 = X_h\), the predicted value, that is an estimate of the mean selling price (in $1000) when size of the house is 1850 sq. ft., is \(\widehat Y_h = 28.981 + (2.941) (18.5) = 83.39\).
    • MSE: The degrees of freedom (df) \(= n-2 = 17\). \(SSE = \sum_i(Y_i - \overline{Y})^2 - b_1^2\sum_i(X_i - \overline{X})^2 = 203.17\). So, \(MSE = \frac{SSE}{n-2} = \frac{203.17}{17} = 11.95\).
    • Standard Error Estimates: \(s^2(b_0) = MSE \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_i(X_i - \overline{X})^2} \right] = 73.00\), \(\qquad s(b_0) = \sqrt{s^2(b_0)} = 8.544\).
      \(s^2(b_1) = \frac{MSE}{\sum_i(X_i - \overline{X})^2} = 0.2929\), \(\qquad s(b_1) = \sqrt{s^2(b_1)} = 0.5412\).
    • Confidence Intervals: We assume that the errors are normal to find confidence intervals for the parameters \(\beta_0\) and \(\beta_1\). We use the fact that \(\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}\) and \(\frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}\) where \(t_{n-2}\) denotes the \(t\)-distribution with \(n-2\) degrees of freedom. Since \(t(0.975;17) = 2.1098\), it follows that 95% two-sided confidence interval for \(\beta_1\) is \(2.941 \pm (2.1098)(0.5412) = (1.80, 4.08)\). Since \(t(0.95;17) = 1.740\), the 90% two-sided confidence interval for \(\beta_0\) is \(28.981\pm (1.740)(8.544) = (14.12,43.84)\).

    Contributors

    • Agnes Oshiro
    (Source: Spring 2012 STA108 Handout 4)

    This page titled Inference in Simple Linear Regression is shared under a not declared license and was authored, remixed, and/or curated by Debashis Paul.

    • Was this article helpful?