Inference in Simple Linear Regression

• **Fact**: Under normal regression model \([(b_0, b_1)]\) and \([SSE]\) are independently distributed and
\[
\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}, \quad \frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}, \quad SSE \sim \sigma^2 \chi_{n-2}^2.
\]

• **Confidence interval for \([\beta_0]\) and \([\beta_1]\)**: \(100(1-\alpha)\%\) (two-sided) confidence interval for \(\beta_i\):
\[
(b_i - t(1-\alpha/2;n-2) s(b_i), \ b_i + t(1-\alpha/2;n-2) s(b_i))
\]
for \(i=0,1\), where \(t(1-\alpha/2;n-2)\) is the \(1-\alpha/2\) upper cut-off point (or \((1-\alpha/2)\) quantile) of \(t_{n-2}\) distribution; i.e., \(P(t_{n-2} > t(1-\alpha/2;n-2)) = \alpha/2\).

• **Hypothesis tests for \([\beta_0]\) and \([\beta_1]\)**: \(H_0 : \beta_i = \beta_{i0}\) \((i=0\) or \(1\)).
 Test statistic : \(T_i = \frac{b_i - \beta_{i0}}{s(b_i)}\).

 1. Alternative: \(H_1 : \beta_i > \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(P(T_i^{\text{observed}} > t(1-\alpha;n-2))\). Or if, P-value = \(P(T_i^{\text{observed}} > T_i^*) < \alpha\).

 2. Alternative: \(H_1 : \beta_i < \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(P(T_i^{\text{observed}} < t(\alpha;n-2))\). Or if, P-value = \(P(T_i^{\text{observed}} < T_i^*) < \alpha\).

 3. Alternative: \(H_1 : \beta_i \neq \beta_{i0}\). Reject \(H_0\) at level \(\alpha\) if \(P(|T_i^{\text{observed}}| > |T_i^*|) < \alpha\).

Inference for mean response at \(X = X_h\)
• Point estimate: $\widehat Y_h = b_0 + b_1 X_h$.

Fact: $E(\widehat Y_h) = \beta_0 + \beta_1 X_h = E(Y_h)$, $Var(\widehat Y_h) = \sigma^2(\widehat Y_h) = \sigma^2\left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]$. Estimated variance is $s^2(\widehat Y_h) = \text{MSE} \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]$. Distribution: $\frac{\widehat Y_h - E(Y_h)}{s(\widehat Y_h)} \sim t_{n-2}$.

Confidence interval: $100(1-\alpha)$% confidence interval for $E(Y_h)$ is $(\widehat Y_h - t(1-\alpha/2;n-2) s(\widehat Y_h), \widehat Y_h + t(1-\alpha/2;n-2) s(\widehat Y_h))$.

Prediction of a new observation $Y_{h(new)}$ at $X = X_h$

• Prediction : $\widehat Y_{h(new)} = \widehat Y_h = b_0 + b_1 X_h$.

Error in prediction : $Y_{h(new)} - \widehat Y_{h(new)} = Y_{h(new)} - \widehat Y_h$.

Fact : $\sigma^2(Y_{h(new)} - \widehat Y_h) = \sigma^2(Y_{h(new)}) + \sigma^2(\widehat Y_h) = \sigma^2 + \sigma^2\left[1 + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]$.

Estimate of $\sigma^2(Y_{h(new)} - \widehat Y_h)$ is $s^2(Y_{h(new)} - \widehat Y_h) = \text{MSE} \left[1 + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_i (X_i - \overline{X})^2}\right]$.

Distribution : $\frac{Y_{h(new)} - \widehat Y_h}{s(Y_{h(new)} - \widehat Y_h)} \sim t_{n-2}$.

Prediction interval : $100(1-\alpha)$% prediction interval for $Y_{h(new)}$ is $(\widehat Y_h - t(1-\alpha/2;n-2) s(Y_{h(new)} - \widehat Y_h), \widehat Y_h + t(1-\alpha/2;n-2) s(Y_{h(new)} - \widehat Y_h))$.

• Confidence band for the regression line : At $X = X_h$ the $100(1-\alpha)$% confidence band for the regression line is given by $(\widehat Y_h \pm w_\alpha s(\widehat Y_h), \widehat Y_h \pm w_\alpha s(\widehat Y_h))$, where $w_\alpha = \sqrt{2F(1-\alpha; 2, n-2)}$.

Here $F(1-\alpha; 2, n-2)$ is the $(1-\alpha)$ upper cut-off point (or, $(1-\alpha)$ quantile) for the $F_{2,n-2}$ distribution (of F) distribution with d.f. $(2, n-2)$).

Example of PageIndex(1): Simple linear regression

We consider a data set on housing price. Here $Y =$ selling price of houses (in $1000)$, and $X =$ size of house (100 square feet). The summary statistics are given below:

$(n = 19)$, $\overline{X} = 15.719$, $\overline{Y} = 75.211$,

$(\sum_i (X_i - \overline{X})^2 = 40.805)$,

$(\sum_i (Y_i - \overline{Y})^2 = 556.078)$,

$(\sum_i (X_i - \overline{X})(Y_i - \overline{Y}) = 120.001)$.

Estimates of β_1 and β_0:

$b_1 = \frac{\sum_i (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_i (X_i - \overline{X})^2} = 2.941$

$b_0 = \frac{\sum_i Y_i - b_1 \sum_i X_i}{n} = 6.351$.
\[b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - (2.941)(15.719) = 28.981.\]

Fit and Prediction: The fitted regression line: \(Y = 28.981 + 2.941 X\). When \(X = 18.5 = X_h\), the predicted value, that is an estimate of the mean selling price (in $1000) when size of the house is 1850 sq. ft., is \(\widehat{Y}_h = 28.981 + (2.941)(18.5) = 83.39\).

MSE: The degrees of freedom (df) \(= n-2 = 17\). \(\text{SSE} = \sum_i(Y_i - \overline{Y})^2 - b_1^2\sum_i(X_i - \overline{X})^2 = 203.17\). So, \(\text{MSE} = \frac{\text{SSE}}{n-2} = \frac{203.17}{17} = 11.95\).

Standard Error Estimates: \(s^2(b_0) = \text{MSE} \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_i(X_i - \overline{X})^2} \right] = 73.00\), \(s(b_0) = \sqrt{s^2(b_0)} = 8.544\).
\(s^2(b_1) = \frac{\text{MSE}}{\sum_i(X_i - \overline{X})^2} = 0.2929\), \(s(b_1) = \sqrt{s^2(b_1)} = 0.5412\).

Confidence Intervals: We assume that the errors are normal to find confidence intervals for the parameters \(\beta_0\) and \(\beta_1\). We use the fact that \(\frac{b_0 - \beta_0}{s(b_0)} \sim t_{n-2}\) and \(\frac{b_1 - \beta_1}{s(b_1)} \sim t_{n-2}\) where \(t_{n-2}\) denotes the \(t\)-distribution with \(n-2\) degrees of freedom. Since \(t(0.975;17) = 2.1098\), it follows that 95% two-sided confidence interval for \(\beta_1\) is \((2.941 \pm 2.1098)(0.5412) = (1.80, 4.08)\). Since \(t(0.95;17) = 1.740\), the 90% two-sided confidence interval for \(\beta_0\) is \((28.981 \pm 1.740)(8.544) = (14.12, 43.84)\).

Contributors

- Agnes Oshiro

(Source: Spring 2012 STA108 Handout 4)