Skip to main content
Statistics LibreTexts

Common Formulas

  • Page ID
    17988
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following formulas are in the order in which you learn about them in this textook.  Use the Table of Contents to look for a specific equation.

    Descriptive Statistics

    Mean

    \[ \displaystyle \bar{X} = \dfrac{\sum X}{N} \]

    Standard Deviation

    \[s=\sqrt{\dfrac{\sum(X-\overline {X})^{2}}{N-1}} \]

    Which is also:  \(s=\sqrt{\dfrac{\sum(X-\overline {X})^{2}}{N-1}}=\sqrt{\dfrac{S S}{d f}} \)

    z-score

    To find the z-score when you have a raw score:

    \[z=\frac{X-\bar{X}}{s}\]

    To find a raw score when you have a z-score:

    \[x=z s+\overline{X} \]

    t-tests

    One-Sample t-test

    These are the same formulas, but formatted slightly differently.

    \[t = \cfrac{(\bar{X}-\mu)}{\left(\cfrac{s} {\sqrt{n}}\right)} \]

    Confidence Interval

    \[\text {Margin of Error }=t \times \left(\dfrac{s}{\sqrt{N}}\right) \nonumber \]

    \[\text { Confidence Interval }=\overline{X} \pm (t \times \left(\dfrac{s}{\sqrt{N}}\right)) \]

    Independent Sample t-test

    \[t=\dfrac{(\bar{X}_{1}-\bar{X}_{2})}{\sqrt{\left[\dfrac{\left(n_{1}-1\right) \times s_{1}^{2} + \left(n_{2}-1\right) \times s_{2}^{2}}{n_{1}+n_{2}-2}\right] \times \left(\dfrac{1}{n_{1}} + \dfrac{1}{n_{2}}\right)}} \]

    Dependent Sample t-test

    Conceptual Formula (symbols)

    \[ t = \cfrac{\overline{X}_{D}}{\left(\cfrac{s_{D}}{\sqrt{N}} \right)} \]

    Full Formula

    \[ t = \cfrac{ \left(\cfrac{\Sigma {D}}{N}\right)} { {\sqrt{\left(\cfrac{\sum\left((X_{D}-\overline{X}_{D})^{2}\right)}{(N-1)}\right)} } /\sqrt{N} } \]

    \[S S_{B}=\sum_{EachGroup} \left[ \left(\overline{X}_{group}-\overline{X}_{T}\right)^{2}  \times (n_{group}) \right] \]

    \[S S_{W}=\sum_{EachGroup} \left[ \sum \left(\left(X-\overline{X}_{group}\right)^{2}\right) \right] \]

    \[S S_{T}=\sum \left[ \left(X - \overline{X}_{T}\right)^{2} \right] \]

    \[ HSD =  q \times \sqrt{\dfrac{MSw}{n_{group}}} \]

    Same as above.

    \[SS_{Ps} = \left[\sum{\left(\dfrac{(\sum{X_{Ps}})^2}{k}\right)}\right] -\dfrac{\left((\sum{X})^2\right)}{N} \]

    \[SS_{WG} = SS_{T} - SS_{BG} - S_{P} \nonumber \]

    Same as above.

    Pearson's r (Correlation)

    The following formulas are the same.  Use the first one when you already have the standard deviation calculated.

    These are paired data, so N is the number of pairs.  

    SD Already Calculated:

    \[ r= \cfrac{ \left( \cfrac{\sum ((x_{Each} - \bar{X_x})\times(y_{Each} - \bar{X_y}) ) }{(N-1)}\right) } {(s_x \times s_y)} \]

    SD Not Calculated:

    \[ r = \cfrac{ \left( \cfrac{\sum ((x - \bar{X_x})\times(y - \bar{X_y}) ) }{(N-1)}\right) } {\left( \sqrt{\dfrac{\sum\left((x-\overline {X_x})^{2}\right)}{N-1}} \right) \times \left( \sqrt{\dfrac{\sum\left((y-\overline {X_y})^{2}\right)}{N-1}}  \right)} \]

    Regression Line Equation

    \[\widehat{\mathrm{Y}}=\mathrm{a}+(\mathrm{b}\times{X}) \]

    a (intercept):

    \[\mathrm{a}=\overline{X_y}- (\mathrm{b} \times \overline{X_x}) \]

    b (slope):

    \[ \dfrac{\sum(Diff_{x} \times Diff_{y})}{\sum({Diff_{X}}^2)} \]

    In which "Diff" means the differences between each score and that variable's mean. 

    Pearson's \(\chi^2\) (Chi-Square)

            \[\chi^{2}=\sum_{Each}\left(\dfrac{\left(E-O\right)^{2}}{E} \right)\]

    Expected Frequencies

    Goodness of Fit:    

    \[\dfrac{N}{k}\]

    Test of Independence:

    \[E_{EachCell}=\dfrac{RT \times CT}{N}  \]

    In which RT = Row Total and CT = Column Total

    • Was this article helpful?