12.1 Test of Two Variances H_{0} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=\delta_{0}\nonumberH_{a} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq \delta_{0}\nonumber if \delta_{0}=1 then \[H...12.1 Test of Two Variances H_{0} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=\delta_{0}\nonumberH_{a} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq \delta_{0}\nonumber if \delta_{0}=1 then H_{0} : \sigma_{1}^{2}=\sigma_{2}^{2}\nonumberH_{a} : \sigma_{1}^{2} \neq \sigma_{2}\nonumber Test statistic is : F_{c}=\frac{S_{1}^{2}}{S_{2}^{2}}\nonumber 12.3 The F Distribution and the F-Ratio \(S S_{\mathrm{between}}=\sum\left[\frac{\left(s_{j}\right)^{2}}{n_{j}}\right]-\frac{\left(\…
12.1 Test of Two Variances H_{0} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=\delta_{0}\nonumberH_{a} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq \delta_{0}\nonumber if \delta_{0}=1 then \[H...12.1 Test of Two Variances H_{0} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=\delta_{0}\nonumberH_{a} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq \delta_{0}\nonumber if \delta_{0}=1 then H_{0} : \sigma_{1}^{2}=\sigma_{2}^{2}\nonumberH_{a} : \sigma_{1}^{2} \neq \sigma_{2}\nonumber Test statistic is : F_{c}=\frac{S_{1}^{2}}{S_{2}^{2}}\nonumber 12.3 The F Distribution and the F-Ratio \(S S_{\mathrm{between}}=\sum\left[\frac{\left(s_{j}\right)^{2}}{n_{j}}\right]-\frac{\left(\…