10.1 Comparing Two Independent Population Means Standard error: SE=√(s1)2n1+(s2)2n2 Test statistic (t-score): \(t_{c}=\frac{\left(\...10.1 Comparing Two Independent Population Means Standard error: SE=√(s1)2n1+(s2)2n2 Test statistic (t-score): tc=(¯x1−¯x2)−δ0√(s1)2n1+(s2)2n2 Degrees of freedom: \(d f=\frac{\left(\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}\right)^{2}}{\left(\frac{1}{n_{1}-1}\right)\left(\fr…
10.1 Comparing Two Independent Population Means Standard error: SE=√(s1)2n1+(s2)2n2 Test statistic (t-score): \(t_{c}=\frac{\left(\...10.1 Comparing Two Independent Population Means Standard error: SE=√(s1)2n1+(s2)2n2 Test statistic (t-score): tc=(¯x1−¯x2)−δ0√(s1)2n1+(s2)2n2 Degrees of freedom: \(d f=\frac{\left(\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}\right)^{2}}{\left(\frac{1}{n_{1}-1}\right)\left(\fr…