Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 3 results
  • https://stats.libretexts.org/Courses/Fresno_City_College/Introduction_to_Business_Statistics_-_OER_-_Spring_2023/07%3A_The_Central_Limit_Theorem/7.08%3A_Chapter_Formula_Review
    7.1 The Central Limit Theorem for Sample Means The Central Limit Theorem for Sample Means: \(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\) \(Z=\frac{\overline{X}-\mu_{\...7.1 The Central Limit Theorem for Sample Means The Central Limit Theorem for Sample Means: \(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\) \(Z=\frac{\overline{X}-\mu_{\overline{X}}}{\sigma_{X}}=\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}\) The Mean \(\overline{X} : \mu_{\overline x}\) Central Limit Theorem for Sample Means z-score \(z=\frac{\overline{x}-\mu_{\overline{x}}}{\left(\frac{\sigma}{\sqrt{n}}\right)}\) Standard Error of the Mean (Standard Deviation \((\o…
  • https://stats.libretexts.org/Courses/Fresno_City_College/Book%3A_Business_Statistics_Customized_(OpenStax)/07%3A_The_Central_Limit_Theorem/7.06%3A_Chapter_Formula_Review
    7.1 The Central Limit Theorem for Sample Means The Central Limit Theorem for Sample Means: \(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\) \(Z=\frac{\overline{X}-\mu_{\...7.1 The Central Limit Theorem for Sample Means The Central Limit Theorem for Sample Means: \(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\) \(Z=\frac{\overline{X}-\mu_{\overline{X}}}{\sigma_{X}}=\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}\) The Mean \(\overline{X} : \mu_{\overline x}\) Central Limit Theorem for Sample Means z-score \(z=\frac{\overline{x}-\mu_{\overline{x}}}{\left(\frac{\sigma}{\sqrt{n}}\right)}\) Standard Error of the Mean (Standard Deviation \((\o…
  • https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/BFE_1201_Statistical_Methods_for_Finance_(Kuter)/05%3A_Point_Estimates/5.09%3A_Chapter_Formula_Review
    \(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\) \(Z=\frac{\overline{X}-\mu_{\overline{X}}}{\sigma_{X}}=\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}\) Central Limit Theore...\(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\) \(Z=\frac{\overline{X}-\mu_{\overline{X}}}{\sigma_{X}}=\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}\) Central Limit Theorem for Sample Means z-score \(z=\frac{\overline{x}-\mu_{\overline{x}}}{\left(\frac{\sigma}{\sqrt{n}}\right)}\) Finite Population Correction Factor for the sampling distribution of means: \(Z=\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}}\)

Support Center

How can we help?