Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 2 results
  • https://stats.libretexts.org/Courses/Fresno_City_College/Book%3A_Business_Statistics_Customized_(OpenStax)/05%3A_Continuous_Random_Variables/5.05%3A_Chapter_Formula_Review
    Probability density function: \(f(x)=\frac{1}{b-a} \text { for } a \leq X \leq b\) Area to the Left of \(\bf{x}\): \(P(X<x)=(x-a)\left(\frac{1}{b-a}\right)\) Area to the Right of \(\bf{x}\): \(P(X>x)=...Probability density function: \(f(x)=\frac{1}{b-a} \text { for } a \leq X \leq b\) Area to the Left of \(\bf{x}\): \(P(X<x)=(x-a)\left(\frac{1}{b-a}\right)\) Area to the Right of \(\bf{x}\): \(P(X>x)=(b-x)\left(\frac{1}{b-a}\right)\) Area Between \(\bf{c}\) and \(\bf{d}\): \(P(c<X<d)=(d-c)\left(\frac{1}{b-a}\right)\) cdf: \(P(X \leq x) = 1 – e^{(–mx)}\) Poisson probability: \(P(X=x)=\frac{\mu^{x} e^{-\mu}}{x !}\) with mean and variance of \(\mu\)
  • https://stats.libretexts.org/Courses/Fresno_City_College/Introduction_to_Business_Statistics_-_OER_-_Spring_2023/05%3A_Continuous_Random_Variables/5.07%3A_Chapter_Formula_Review
    5.1 Properties of Continuous Probability Density Functions Probability density function (pdf) \(f(x)\): Cumulative distribution function (cdf): \(P(X \leq x)\) 5.2 The Uniform Distribution \(X \sim U ...5.1 Properties of Continuous Probability Density Functions Probability density function (pdf) \(f(x)\): Cumulative distribution function (cdf): \(P(X \leq x)\) 5.2 The Uniform Distribution \(X \sim U (a, b)\) The mean is \(\mu=\frac{a+b}{2}\) The standard deviation is \(\sigma=\sqrt{\frac{(b-a)^{2}}{12}}\) Probability density function: \(f(x)=\frac{1}{b-a} \text { for } a \leq X \leq b\) Area to the Left of \(\bf{x}\): \(P(X<x)> Area to the Right of \(\bf{x}\): \(P(X>x)=(b-x)\left(\frac{1}{b-a}…

Support Center

How can we help?