Probability density function: f(x)=1b−a for a≤X≤b Area to the Left of x: P(X<x)=(x−a)(1b−a) Area to the Right of x: \(P(X>x)=...Probability density function: f(x)=1b−a for a≤X≤b Area to the Left of x: P(X<x)=(x−a)(1b−a) Area to the Right of x: P(X>x)=(b−x)(1b−a) Area Between c and d: P(c<X<d)=(d−c)(1b−a) cdf: P(X \leq x) = 1 – e^{(–mx)} Poisson probability: P(X=x)=\frac{\mu^{x} e^{-\mu}}{x !} with mean and variance of \mu
5.1 Properties of Continuous Probability Density Functions Probability density function (pdf) f(x): Cumulative distribution function (cdf): P(X \leq x) 5.2 The Uniform Distribution \(X \sim U ...5.1 Properties of Continuous Probability Density Functions Probability density function (pdf) f(x): Cumulative distribution function (cdf): P(X \leq x) 5.2 The Uniform Distribution X \sim U (a, b) The mean is \mu=\frac{a+b}{2} The standard deviation is \sigma=\sqrt{\frac{(b-a)^{2}}{12}} Probability density function: f(x)=\frac{1}{b-a} \text { for } a \leq X \leq b Area to the Left of \bf{x}: P(X<x)> Area to the Right of \(\bf{x}: \(P(X>x)=(b-x)\left(\frac{1}{b-a}…