\(\left(\overline{x}_{1}-\overline{x}_{2}\right) \pm\left[t_{d f,(\alpha / 2)} \sqrt{\left(\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}\right)}\right] \text { where } d f=...(¯x1−¯x2)±[tdf,(α/2)√((s1)2n1+(s2)2n2)] where df=((s1)2n1+(s2)2n2)2(1n1−1)((s1)2n1)+(1n2−1)((s2)2n2)
\(\left(\overline{x}_{1}-\overline{x}_{2}\right) \pm\left[t_{d f,(\alpha / 2)} \sqrt{\left(\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}\right)}\right] \text { where } d f=...(¯x1−¯x2)±[tdf,(α/2)√((s1)2n1+(s2)2n2)] where df=((s1)2n1+(s2)2n2)2(1n1−1)((s1)2n1)+(1n2−1)((s2)2n2)
\(\left(\overline{x}_{1}-\overline{x}_{2}\right) \pm\left[t_{d f,(\alpha / 2)} \sqrt{\left(\frac{\left(s_{1}\right)^{2}}{n_{1}}+\frac{\left(s_{2}\right)^{2}}{n_{2}}\right)}\right] \text { where } d f=...(¯x1−¯x2)±[tdf,(α/2)√((s1)2n1+(s2)2n2)] where df=((s1)2n1+(s2)2n2)2(1n1−1)((s1)2n1)+(1n2−1)((s2)2n2)