Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 3 results
  • https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/BFE_1201_Statistical_Methods_for_Finance_(Kuter)/07%3A_Hypothesis_Testing/7.10%3A_Comparing_Two_Independent_Population_Proportions
    Like the case of differences in sample means, we construct a sampling distribution for differences in sample proportions: \(\left(p_{A}^{\prime}-p_{B}^{\prime}\right)\) where \(p_{A}^{\prime}=X_{\frac...Like the case of differences in sample means, we construct a sampling distribution for differences in sample proportions: \(\left(p_{A}^{\prime}-p_{B}^{\prime}\right)\) where \(p_{A}^{\prime}=X_{\frac{A}{n_{A}}}\) and \(p_{B}^{\prime}=X_{\frac{B}{n_{B}}}\) are the sample proportions for the two sets of data in question. \(X_A\) and \(X_B\) are the number of successes in each sample group respectively, and \(n_A\) and \(n_B\) are the respective sample sizes from the two groups.
  • https://stats.libretexts.org/Courses/Fresno_City_College/Book%3A_Business_Statistics_Customized_(OpenStax)/10%3A_Hypothesis_Testing_with_Two_Samples/10.05%3A_Comparing_Two_Independent_Population_Proportions
    Like the case of differences in sample means, we construct a sampling distribution for differences in sample proportions: \(\left(p_{A}^{\prime}-p_{B}^{\prime}\right)\) where \(p_{A}^{\prime}=X_{\frac...Like the case of differences in sample means, we construct a sampling distribution for differences in sample proportions: \(\left(p_{A}^{\prime}-p_{B}^{\prime}\right)\) where \(p_{A}^{\prime}=X_{\frac{A}{n_{A}}}\) and \(p_{B}^{\prime}=X_{\frac{B}{n_{B}}}\) are the sample proportions for the two sets of data in question. \(X_A\) and \(X_B\) are the number of successes in each sample group respectively, and \(n_A\) and \(n_B\) are the respective sample sizes from the two groups.
  • https://stats.libretexts.org/Courses/Fresno_City_College/Introduction_to_Business_Statistics_-_OER_-_Spring_2023/10%3A_Hypothesis_Testing_with_Two_Samples/10.05%3A_Comparing_Two_Independent_Population_Proportions
    Like the case of differences in sample means, we construct a sampling distribution for differences in sample proportions: \(\left(p_{A}^{\prime}-p_{B}^{\prime}\right)\) where \(p_{A}^{\prime}=X_{\frac...Like the case of differences in sample means, we construct a sampling distribution for differences in sample proportions: \(\left(p_{A}^{\prime}-p_{B}^{\prime}\right)\) where \(p_{A}^{\prime}=X_{\frac{A}{n_{A}}}\) and \(p_{B}^{\prime}=X_{\frac{B}{n_{B}}}\) are the sample proportions for the two sets of data in question. \(X_A\) and \(X_B\) are the number of successes in each sample group respectively, and \(n_A\) and \(n_B\) are the respective sample sizes from the two groups.

Support Center

How can we help?