Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Statistics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Embed Jupyter
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
  • Include attachments
Searching in
About 3 results
  • https://stats.libretexts.org/Courses/Fresno_City_College/Book%3A_Business_Statistics_Customized_(OpenStax)/05%3A_Continuous_Random_Variables/5.07%3A_Chapter_Key_Terms
    The probability density function is \(f(x)=m e^{-m x} \text { or } f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0\) and the cumulative distribution function is \(P(X \leq x)=1-e^{-m x} \text { or }...The probability density function is \(f(x)=m e^{-m x} \text { or } f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0\) and the cumulative distribution function is \(P(X \leq x)=1-e^{-m x} \text { or } P(X \leq x)=1-e^{-\frac{1}{\mu} x}\). Uniform Distribution a continuous random variable (RV) that has equally likely outcomes over the domain, \(a < x < b\); it is often referred as the rectangular distribution because the graph of the pdf has the form of a rectangle.
  • https://stats.libretexts.org/Courses/Fresno_City_College/Introduction_to_Business_Statistics_-_OER_-_Spring_2023/05%3A_Continuous_Random_Variables/5.05%3A_Chapter_Key_Terms
    The probability density function is \(f(x)=m e^{-m x} \text { or } f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0\) and the cumulative distribution function is \(P(X \leq x)=1-e^{-m x} \text { or }...The probability density function is \(f(x)=m e^{-m x} \text { or } f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0\) and the cumulative distribution function is \(P(X \leq x)=1-e^{-m x} \text { or } P(X \leq x)=1-e^{-\frac{1}{\mu} x}\). Uniform Distribution a continuous random variable (RV) that has equally likely outcomes over the domain, \(a < x < b\); it is often referred as the rectangular distribution because the graph of the pdf has the form of a rectangle.
  • https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame/BFE_1201_Statistical_Methods_for_Finance_(Kuter)/04%3A_Random_Variables/4.10%3A_Chapter_Key_Items/4.10.01%3A_Chapter_Key_Terms
    The probability density function is \(f(x)=m e^{-m x} \text { or } f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0\) and the cumulative distribution function is \(P(X \leq x)=1-e^{-m x} \text { or }...The probability density function is \(f(x)=m e^{-m x} \text { or } f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0\) and the cumulative distribution function is \(P(X \leq x)=1-e^{-m x} \text { or } P(X \leq x)=1-e^{-\frac{1}{\mu} x}\). a continuous random variable (RV) that has equally likely outcomes over the domain, \(a < x < b\); it is often referred as the rectangular distribution because the graph of the pdf has the form of a rectangle.

Support Center

How can we help?